Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: David Carlson (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 34

Photonic bandgap microcombs at 1064 nm

February 27, 2024
Author(s)
Gregory Spektor, Jizhao Zang, Atasi Dan, Travis Briles, Grant Brodnik, Haixin Liu, Jennifer Black, David Carlson, Scott Papp
Microresonator frequency combs and their design versatility have revolutionized research areas from data communication to exoplanet searches. While microcombs in the 1550 nm band are well documented, there is interest in using microcombs in other bands

Optical frequency division & pulse synchronization using a photonic-crystal microcomb injected chip-scale mode-locked laser

February 15, 2024
Author(s)
Chinmay Shirpurkar, Jizhao Zang, Ricardo Bustos-Ramirez, David Carlson, Travis Briles, Lawrence R. Trask, Srinivas V. Pericherla, Di Huang, Ashish Bhardwaj, Gloria E. Hoefler, Scott Papp, Peter J. Delfyett
A mode-locked laser photonic integrated circuit with a repetition rate of 10 GHz is optically synchronized to a tantalabased photonic crystal resonator comb with a repetition rate of 200 GHz. The synchronization is achieved through regenerative harmonic

Laser-power consumption of soliton formation in a bidirectional Kerr resonator

January 30, 2024
Author(s)
Jizhao Zang, Su-Peng Yu, Haixin Liu, Yan Jin, Travis Briles, David Carlson, Scott Papp
Laser sources power extreme data transmission as well as computing acceleration, access to ultrahigh-speed signaling, and sensing for chemicals, distance, and pattern recognition. The ever-growing scale of these applications drives innovation in multi

Threshold and Laser Conversion in Nanostructured-Resonator Parametric Oscillators

January 10, 2024
Author(s)
Haixin Liu, Grant Brodnik, Jizhao Zang, David Carlson, Jennifer Black, Scott Papp
We explore optical parametric oscillation (OPO) in nanophotonic resonators, enabling arbitrary, nonlinear phase matching and nearly lossless control of energy conversion. Such pristine OPO laser converters are determined by nonlinear light-matter

Tailoring microcombs with inverse-designed, meta-dispersion microresonators

July 17, 2023
Author(s)
Erwan Lucas, Su-Peng Yu, Travis Briles, David Carlson, Scott Papp
Nonlinear wave mixing in optical microresonators ofers new perspectives to generate compact optical-frequency microcombs, which enable an ever-growing number of applications. Microcombs exhibit a spectral profle that is primarily determined by their

Universal visible emitters in nanoscale integrated photonics

June 30, 2023
Author(s)
Gregory Spektor, David Carlson, Zachary Newman, Jinhie Lee Skarda, Neil Sapra, Logan Su, Sindhu Jammi, Andrew Ferdinand, Amit Agrawal, Jelena Vuckovic, Scott Papp
Visible wavelength lasers control quantum matter of atoms and molecules, enable frontiers of physical sensing, and are foundational for various applications. The development of visible integrated photonics opens the possibility for scalable circuits with

Nonlinear Networks for Arbitrary Optical Synthesis

May 19, 2023
Author(s)
Jennifer Black, Zachary Newman, Su-Peng Yu, David Carlson, Scott Papp
Nonlinear wavelength conversion is a powerful control of light, especially when implemented at the nanoscale with integrated photonics. However, strict energy conservation and phase-matching requirements constrain the converted output. To overcome these

Optical-parametric oscillation in photonic-crystal ring resonators

October 20, 2022
Author(s)
Jennifer Black, Grant Brodnik, Haixin Liu, Su-Peng Yu, David Carlson, Jizhao Zang, Travis Briles, Scott Papp
By-design access to laser wavelength, especially with integrated photonics, is critical to advance quantum sensors, such as optical clocks and quantum-information systems, and open opportunities in optical communication. Semiconductor-laser gain provides

Photonic crystal resonators for inverse-designed multi-dimensional optical interconnects

June 9, 2022
Author(s)
Jizhao Zang, C. SHIRPURKAR, K.Y. YANG, David Carlson, Su-peng Yu, Erwan Lucas, S.V. PERICHERLA, J. Yang, M. GUIDRY, D. LUKIN, L. TRASK, F. AFLATOUNI, J. VUVC KOVI'C, Scott Papp, P.J. DELFYETT
We experimentally demonstrate a 40-channel 400 Gbps optical communication link utilizing wavelength division multiplexing and mode-division multiplexing. This link utilizes a novel 400 GHz photonic crystal resonator as a chip-scale frequency comb source

Tantala Kerr nonlinear integrated photonics

May 26, 2021
Author(s)
Hojoong Jung, Su P. Yu, David Carlson, Tara E. Drake, Travis Briles, Scott Papp
Integrated photonics plays a central role in modern science and technology, enabling experiments from nonlinear science to quantum information, ultraprecise measurements and sensing, and advanced applications like data communication and signal processing

Group-velocity dispersion engineering of tantalum pentoxide integrated photonics

February 9, 2021
Author(s)
Jennifer Black, Richelle H. Streater, Kieran F. LaMee, David Carlson, Su P. Yu, Scott Papp
Designing integrated photonics, especially to leverage Kerr-nonlinear optics, requires accurate and precise knowledge of refractive index across the visible to infrared spectral ranges. Tantalum pentoxide (Ta2O5, tantala) is an emerging material platform

Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560 nm

July 22, 2020
Author(s)
Kieran F. LaMee, David Carlson, Zachary Newman, Su P. Yu, Scott Papp
We experimentally demonstrate efficient and broadband supercontinuum generation in nonlinear tantala (Ta2O5) waveguides using a 1560 nm femtosecond seed laser. With incident pulse energies as low as 100 pJ, we create spectra spanning up to 1.6 octaves

Mid-infrared frequency combs at 10 GHz

June 29, 2020
Author(s)
Abijith S. Kowligy, David Carlson, Daniel D. Hickstein, Henry R. Timmers, Alexander Lind, Scott Papp, Scott Diddams
We demonstrate 10 GHz mid-infrared frequency combs spanning 3-5 μm and 7-11 μm that are generated with few-cycle electro-optic pulses and intrapulse difference-frequency generation.

Ultranarrow linewidth photonic-atomic laser

January 8, 2020
Author(s)
Wei Zhang, Liron Stern, David R. Carlson, Douglas G. Bopp, Zachary L. Newman, Songbai Kang, John Kitching, Scott Papp
Lasers with high spectral purity can enable a diverse application space, including precision spectroscopy, coherent high-speed communications, physical sensing, and manipulation of quantum systems. Already, meticulous design and construction of bench Fabry

Generating few-cycle pulses with integrated nonlinear photonics

December 10, 2019
Author(s)
David Carlson, Phillips Hutchison, Daniel D. Hickstein, Scott Papp
Ultrashort laser pulses that last only a few optical cycles have been transformative tools for studying and manipulating ultrafast light--matter interactions. These few-cycle pulses are typically produced from high-peak-power lasers, either directly from

Terahertz-Rate Kerr-Microresonator Optical Clockwork

August 12, 2019
Author(s)
Tara E. Drake, Travis Briles, Daryl T. Spencer II, Jordan R. Stone, David R. Carlson, Daniel D. Hickstein, Qing Li, Daron A. Westly, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
Kerr microresonators generate interesting and useful fundamental states of electromagnetic radiation through nonlinear interactions of continuous-wave (CW) laser light. When implemented with photonic-integration techniques, functional devices with low

Self-organized nonlinear gratings for ultrafast nanophotonics

June 3, 2019
Author(s)
Daniel D. Hickstein, David R. Carlson, Haridas Mundoor, Jacob B. Khurgin, Kartik A. Srinivasan, Daron A. Westly, Abijith S. Kowligy, Ivan I. Smalyukh, Scott A. Diddams, Scott B. Papp
We present the first demonstration of automatically quasi-phase-matched second-harmonic generation using femtosecond pulses. The high-confinement geometry of silicon-nitride nanophotonic waveguides provides group-velocity matching, which enables efficient

Dual comb spectroscopy with tailored spectral broadening in nanophotonic Si3N4

April 15, 2019
Author(s)
Esther Baumann, Edgar Perez, Gabriel M. Colacion, Fabrizio Giorgetta, Kevin Cossel, Gabriel Ycas, David Carlson, Kartik Srinivasan, Scott Papp, Ian Coddington, Nathan R. Newbury
Spectral broadening of compact robust Er+: fiber combs is demonstrated with tailored Si3N4 waveguides to obtain spectrally-smooth broadened light in the 2 μm 2.5 μm atmospheric water window for gas spectroscopy. This successfully extends the Er+ spectrum

Fully self-referenced frequency comb consuming 5 Watts of electrical power

September 12, 2018
Author(s)
Paritosh Manurkar, Edgar F. Perez, Daniel D. Hickstein, David R. Carlson, Jeffrey T. Chiles, Daron A. Westly, Esther Baumann, Scott A. Diddams, Nathan R. Newbury, Kartik A. Srinivasan, Scott B. Papp, Ian R. Coddington
We present a hybrid fiber/waveguide design for a 100-MHz frequency comb that is fully self- referenced and temperature controlled with less than 5 W of electrical power. Self-referencing is achieved by supercontinuum generation in a silicon nitride

Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguides

August 27, 2018
Author(s)
Abijith S. Kowligy, Daniel D. Hickstein, Alexander Lind, David Carlson, Henry R. Timmers, Nima Nader, Daniel Maser, Daron Westly, Kartik Srinivasan, Scott Papp, Scott Diddams
We demonstrate wide-band frequency down-conversion to the mid-infrared (MIR) using four-wave mixing (FWM) of near-infrared (NIR) femtosecond-duration pulses from an Er:fiber laser, corresponding to 100 THz spectral translation. Photonic-chip-based silicon

Infrared Astronomical Spectroscopy and Radial Velocity Measurements with Precision Below 10 cm/s

August 9, 2018
Author(s)
Andrew J. Metcalf, Tyler Anderson, Chad F. Bender, Wesley Brand, David Carlson, Scott Diddams, Connor Fredrick, S. Halverson, Daniel D. Hickstein, Fred Hearty, Jeffrey M. Jennings, Shubham Kanodia, Kyle Kaplan, Emily Lubar, Suvrath Mahadevan, Andrew Monson, Joe P. Ninan, Colin Nitroy, Scott Papp, L. Ramsey, Paul Robertson, Arpita Roy, Christian Schwab, Kartik Srinivasan, Gudmundur Stefansson, Ryan C. Terrien
We detail the first infrared precision astronomical spectroscopy results from the combination of an electro-optic laser frequency comb and the Habitable Zone Planet Finder spectrograph at the 10 m Hobby-Eberly telescope.

An electro-optic ultrafast light source with sub-cycle stability

August 8, 2018
Author(s)
David R. Carlson, Daniel D. Hickstein, Wei Zhang, Andrew J. Metcalf, Franklyn J. Quinlan, Scott A. Diddams, Scott B. Papp
Optical frequency combs can produce femtosecond light pulses with sub-cycle precision, and are typically made by relying on the intrinsic stability of mode-locked lasers. Now, by carving a continuous-wave laser into pulses via electro-optic modulation (EOM

Thermal and Nonlinear Dissipative-Soliton Dynamics in Kerr Microresonator Frequency Combs

August 8, 2018
Author(s)
Jordan R. Stone, Travis Briles, Tara E. Drake, Daryl T. Spencer, David R. Carlson, Scott A. Diddams, Scott B. Papp
We report on radiofrequency techniques to reliably generate and control dissipative-Kerr- soliton microresonator frequency combs. Since the pump-laser frequency detuning to the resonator primarily determines the soliton dynamics, we devise an offset Pound