Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Daniel Barker (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 66

Effect of ''glancing'' collisions in the cold atom vacuum standard

February 12, 2025
Author(s)
Stephen Eckel, Daniel Barker, James A. Fedchak, Jacek Klos, Julia Scherschligt, Eite Tiesinga
We theoretically investigate the effect of "glancing" collisions on the ultra-high-vacuum pressure readings of the cold-atom vacuum standard (CAVS), based on either ultracold $^7$Li or $^87}$Rb atoms. Here, glancing collisions are those collisions between

Collision-resolved pressure sensing

April 11, 2024
Author(s)
Daniel Carney, Daniel Barker, Thomas W. LeBrun, David Moore, Jacob Taylor
Heat and pressure are ultimately transmitted via quantized degrees of freedom, like gas particles and phonons. While a continuous Brownian description of these noise sources is adequate to model measurements with relatively long integration times

Grating magneto-optical traps with complicated level structures

October 25, 2023
Author(s)
Daniel Barker, Peter Elgee, Ananya Sitaram, Eric Norrgard, Nikolai Klimov, Gretchen K. Campbell, Stephen Eckel
We study the forces and optical pumping within grating magneto-optical traps (MOTs) operating on transitions with non-trivial level structure. In contrast to the standard six-beam MOT configuration, rate equation modelling predicts that the asymmetric

Simulations of a frequency-chirped magneto-optical trap of MgF

September 8, 2023
Author(s)
Kayla Rodriguez, Nickolas Pilgram, Daniel Barker, Stephen Eckel, Eric Norrgard
We simulate the capture process of MgF molecules into a frequency-chirped molecular MOT. Our calculations show that by chirping the frequency, the MOT capture velocity is increased by about of factor of 4 to 80m/s, allowing for direct loading from a two

Accurate measurement of the loss rate of cold atoms due to background gas collisions for the quantum-based cold atom vacuum standard

August 1, 2023
Author(s)
Daniel Barker, James A. Fedchak, Jacek Klos, Julia Scherschligt, Abrar Sheikh, Eite Tiesinga, Stephen Eckel
We present measurements of thermalized collisional rate coefficients for ultra-cold $^7$Li and $^87}$Rb colliding with room-temperature He, Ne, N$_2$, Ar, Kr, and Xe. In our experiments, a combined flowmeter and dynamic expansion system, a vacuum metrology

Precise Quantum Measurement of Vacuum with Cold Atoms

December 20, 2022
Author(s)
Daniel Barker, Bishnu Acharya, James A. Fedchak, Nikolai Klimov, Eric Norrgard, Julia Scherschligt, Eite Tiesinga, Stephen Eckel
We describe the cold-atom vacuum standards (CAVS) under development at the National Institute of Standards and Technology. The CAVS measures pressure in the ultra-high and extreme-high vacuum regimes by measuring the loss rate of sub-millikelvin sensor

A constant pressure flowmeter for the extremely high vacuum

August 9, 2022
Author(s)
Stephen Eckel, Daniel Barker, James A. Fedchak, Emmanuel Newsome, Julia Scherschligt, Robert E. Vest
We demonstrate operation of a constant-pressure flowmeter capable of generating and accurately measuring flows as low as $1\times10^-13}$mol/s. Generation of such small flows is accomplished by using a small conductance element with $C\approx 25$nL/s

Comparison of two multiplexed portable cold atom vacuum standards

July 15, 2022
Author(s)
Lucas Ehinger, Bishnu Acharya, Daniel Barker, James A. Fedchak, Julia Scherschligt, Eite Tiesinga, Stephen Eckel
We compare the vacuum measured by two portable cold atom vacuum standards (pCAVS) based on ultracold $^7$Li atoms. Our pCAVS devices share the same laser system and measure the vacuum concurrently. The two pCAVS together detected a leak with a rate on the

Laser Spectroscopy of the y7PJo states of Cr I

March 16, 2022
Author(s)
Eric Norrgard, Daniel Barker, Stephen Eckel, Sergey Porsev, Charles Cheung, Mikhail Kozlov, Ilya Tupitsyn, Marianna Safronova
Here we report measured and calculated values of decay rates of the 3d$^4$($^5$D)4s4p($^3$P$^\rmo}}$)\ y$^7$P$^\rmo}}_2,3,4}$ states of Cr I. The decay rates are measured using time-correlated single photon counting with roughly 1\,\% total uncertainty. In

Lambda-enhanced gray molasses in a tetrahedral laser beam geometry

March 14, 2022
Author(s)
Daniel Barker, Eric Norrgard, Nikolai Klimov, James A. Fedchak, Julia Scherschligt, Stephen Eckel
We report observation of sub-Doppler cooling of lithium using an irregular-tetrahedral laser beam arrangement, which is produced by a nanofabricated diffraction grating. We are able to capture 11(2) % of the lithium atoms from a grating magneto-optical

Erratum: Collisions of room temperature helium with ultra-cold lithium and the van-der-Waals bound state of HeLi [Phys. Rev. A 101, 012702 (2020)]

February 28, 2022
Author(s)
Constantinos Makrides, Daniel Barker, James A. Fedchak, Julia Scherschligt, Stephen Eckel, Eite Tiesinga
We have found an error in the computation of the thermally-averaged total elastic rate coefficient for the collision of a room-temperature helium atom with an ultra-cold lithium atom presented. We omitted the factor $2/\sqrt\pi}$ in the normalization over

Progress towards comparison of quantum and classical vacuum standards

September 22, 2021
Author(s)
Daniel Barker, Nikolai Klimov, Eite Tiesinga, James A. Fedchak, Julia Scherschligt, Stephen Eckel
We present our progress towards a comparison of NIST's cold atom primary vacuum standard and a dynamic expansion vacuum standard. The cold atom vacuum standard (CAVS) converts the loss rate of atoms from a magnetic trap to a vacuum pressure using ab initio

Quantum-Based Photonic Sensors for Pressure, Vacuum, and Temperature Measurements: A Vison of the Future with NIST on a Chip

September 17, 2021
Author(s)
Jay H. Hendricks, Zeeshan Ahmed, Daniel Barker, Kevin O. Douglass, Stephen Eckel, James A. Fedchak, Nikolai Klimov, Jacob Edmond Ricker, Julia Scherschligt
The NIST on a Chip (NOAC) program's central idea is the idea that measurement technology can be developed to enable metrology to be performed "outside the National Metrology Institute" by the crea-tion of deployed and often miniaturized standards. These

PyLCP: A python package for computing laser cooling physics

September 9, 2021
Author(s)
Stephen Eckel, Daniel Barker, Eric Norrgard, Julia Scherschligt
We present a python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the