Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Ben Jamroz (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 48 of 48

Precision Millimeter-Wave Modulated Wideband Source for Over-The-Air Reference at 92.4 GHz

April 22, 2020
Author(s)
Paritosh Manurkar, Robert D. Horansky, Benjamin F. Jamroz, Jeffrey A. Jargon, Dylan F. Williams, Catherine A. Remley
As the next generation communications technology continues to evolve to utilize millimeter-wave frequencies, calibration methods are needed for the nonidealities related to these frequencies in communications electronics. In this work, we demonstrate a 1

Millimeter-Wave Highly-Multipath Channel Measurements

February 21, 2020
Author(s)
Alec Weiss, Joshua Kast, Rob Jones, Jeanne Quimby, Rodney Leonhardt, Benjamin Jamroz, Peter Vouras, Dylan Williams, Kate Remley
We provide the frequency response of a high multipath propagation channel using a narrow beamwidth synthetic aperture measurement technique from 26.5 - 40 GHz.

Monte Carlo Sampling Bias in the Microwave Uncertainty Framework

June 27, 2019
Author(s)
Michael R. Frey, Benjamin Jamroz, Amanda Koepke, Jake Rezac, Dylan Williams
The Microwave Uncertainty Framework (MUF) is a software suite created, supported, and made publicly available by the Radio Frequency Division of the U.S. National Institute of Standards and Technology. The general purpose of the MUF is to provide automated

Large-Signal Network Analysis for Over-the-Air Test of Up-Converting and Down-Converting Phased Arrays

June 1, 2019
Author(s)
Alec Weiss, Dylan Williams, Jeanne Quimby, Rod Leonhardt, Thomas Choi, Zihang Chen, Kate Remley, andreas Molisch, Ben Jamroz, Jake Rezac, Peter Vouras
We explore large-signal network analysis for the over-the-air test of up-converting and down-converting phased arrays. The approach first uses a vector network analyzer to calibrate the impulse response of an over-the-air test system at RF. The vector

Propagation of Compact-Modeling Measurement Uncertainty to 220 GHz Power-Amplifier Designs

November 5, 2018
Author(s)
Jerome Cheron, Dylan Williams, Konstanty Lukasik, Richard Chamberlin, Benjamin Jamroz, Erich N. Grossman, Wojciech Wiatr, Dominique Schreurs
We studied the impact of measurement uncertainties in a HBT model and their consequences on the electrical performance under large signal conditions at 9 GHz. Then we use the model with uncertainties to verify the ability of our model to accurately predict

A Systematic Study: Channel Sounding via Modal Expansion

November 3, 2018
Author(s)
Alex Yuffa, Ben Jamroz, Jake Rezac, Dylan Williams
We present preliminary results of using a modal (partial wave) expansion of the field to characterize a propagation channel. We assume that the measurements of the scalar, two-dimensional field from which the modal expansion coefficients are obtained

On-Wafer Transistor Characterization to 750 GHz -the approach, results, and pitfalls

October 14, 2018
Author(s)
Dylan Williams, Jerome Cheron, Ben Jamroz, Richard Chamberlin
We review approaches developed at the National Institute of Standards and Technology for on-wafer transistor characterization and model extraction at sub-millimeter-wave wavelengths, and compare them to more common approaches developed for use at lower

A Self-Calibrated Transfer Standard for Microwave Calorimetry

July 8, 2018
Author(s)
Dazhen Gu, Xifeng Lu, Ben Jamroz, Dylan Williams, Billy F. Riddle, Xiaohai Cui
We develop a new calibration technique for measuring the correction factor of a calorimeter with a vector network analyzer. Based on a wave-parameter formulation, we develop analytic formulas for the correction-factor ($g$) and effective-efficiency ($\eta$

Importance of Preserving Correlations in Error-Vector-MagnitudeUncertainty

June 14, 2018
Author(s)
Ben Jamroz, Dylan Williams, Kate Remley, Rob Horansky
Correlations are an important consideration in the uncertainty analysis of high-frequency electronic systems. We introduce a method to scramble the correlations of a correlated uncertainty analysis and develop a software tool to do this as part of the NIST