Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Nazanin Hoghooghi (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 4 of 4

Dual-comb correlation spectroscopy of thermal light

May 23, 2024
Author(s)
Eugene Tsao, Alexander Lind, Connor Fredrick, Ryan Cole, Peter Chang, Kristina Chang, Dahyeon Lee, Matthew Heyrich, Nazanin Hoghooghi, Franklyn Quinlan, Scott Diddams
The detection of light of thermal origin is the principal means by which humanity has learned about our world and the cosmos. In optical astronomy, in particular, direct detection of thermal photons and the resolution of their spectra have enabled

1-GHz mid-infrared frequency comb spanning 3 to 13 mm

January 18, 2022
Author(s)
Nazanin Hoghooghi, Sida XIng, Peter Chang, Daniel Lesko, Alexander Lind, Greg Rieker, Scott Diddams
Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and imaging. Among the available spectroscopic approaches, MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral

Single-cycle all-fiber frequency comb

July 8, 2021
Author(s)
Sida Xing, Daniel Lesko, Takeshi Umeki, Tsung Han Wu, Alexander Lind, Nazanin Hoghooghi, Scott Diddams
Broad bandwidth mid-infrared frequency combs are important for molecular spectroscopy in a wide range of fundamental and applied research. However, realization of such light sources in a compact and robust format remains a challenge. In this paper, we

Mid-Infrared Dual Frequency Comb Spectroscopy for Combustion Analysisin the 2.8 to 5 micron Spectral Region

June 7, 2020
Author(s)
Ian Coddington, Nathan R. Newbury, Greg Rieker, Amanda S. Makowiecki, Daniel Herman, Nazanin Hoghooghi, Elizabeth F. Strong, Gabriel Ycas, Fabrizio Giorgetta, Ryan Cole, Caelan Lapointe, Jeff Glusman, John Daily, Peter E. Hamlington
We demonstrate the application of mode-locked mid-infrared dual frequency comb spectroscopy for combustion analysis. With two settings of the same dual-comb system, the measurement spans 1500 cm-1 (2.8 to 5 microns) with 0.0067 cm-1 (200 MHz) point spacing