Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Yifan Liu (IntlAssoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 5 of 5

Photonic Millimeter-wave Generation Beyond the Cavity Thermal Limit

February 11, 2025
Author(s)
William Groman, Igor Kudelin, Takuma Nakamura, Yifan Liu, Charles McLemore, Franklyn Quinlan, Scott Diddams, Dahyeon Lee, Megan Kelleher, Joel Guo, Warren Jin, John Bowers
With the next generation of telecommunications and radar/navigation upon us, moving from the microwave to the higher bandwidth, millimeter-wave domain has become ever relevant. Simultaneously, the burgeoning field of photonic integrated chips has yielded a

Ultrastable vacuum-gap Fabry-Perot cavities 2 operated in air

August 21, 2024
Author(s)
Susan Schima, Franklyn Quinlan, Yifan Liu, Charles McLemore, Takuma Nakamura, Nazanin Hoghooghi, Scott Diddams, Peter Rakich, Dahyeon Lee, Naijun Jin, Megan Kelleher, Haotian Cheng
We demonstrate a vacuum-gap ultrastable optical reference cavity that does not require a vacuum enclosure. Our simple method of optical contact bonding in a vacuum environment allows for cavity operation in air while maintaining vacuum between the cavity

Fiber-coupled 2 mL vacuum-gap Fabry-Perot reference cavity for laser stabilization

May 25, 2024
Author(s)
Charles McLemore, Naijun Jin, Megan Kelleher, Yizhi Luo, Dahyeon Lee, Yifan Liu, Takuma Nakamura, David Mason, Peter Rakich, Scott Diddams, Franklyn Quinlan
Vacuum-gap Fabry-Perot cavities are indispensable tools for vastly improving the frequency stability of lasers, with applications across a diverse range of scientific and industrial pursuits. However, making these cavity-based laser stabilization systems

Photonic chip-based low noise microwave oscillator

March 6, 2024
Author(s)
Igor Kudelin, William Groman, Scott Diddams, Dahyeon Lee, Megan Kelleher, Takuma Nakamura, Charles McLemore, Franklyn Quinlan, Qing-Xin Ji, Joel Guo, Andrey Matsko, John Bowers, Kerry Vahala, Warren Jin, Lue Wu, Yifan Liu, Wei Zhang, Steven Bowers, Joe Campbell, Pedram Shirmohammadi, Samin Hanifi, Haotian Cheng, Naijun Jin, Sam Halliday, Zhaowei Dai, Chao Xiang, Vladimir Iltchenko, Owen Miller, Peter Rakich
Numerous modern technologies are reliant on the low-phase noise and timing stability performance of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low noise microwave signals are generated by the down

Low-noise microwave generation with an air-gap optical reference cavity

January 30, 2024
Author(s)
Yifan Liu, Dahyeon Lee, Takuma Nakamura, Naijun Jin, Haotian Cheng, Megan Kelleher, Charles McLemore, Igor Kudelin, William Groman, Scott Diddams, Peter Rakich, Franklyn Quinlan
We demonstrate a high finesse, microfabricated mirror-based, air-gap cavity with volume less than 1 ml, constructed in an array, that can support low-noise microwave generation through optical frequency division. We use the air-gap cavity in conjunction