Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

In-Situ Torque Magnetometry: Magnetic Coupling in Fe/Cr/Fe Thin-Film Systems

Published

Author(s)

Dong-Hoon Min, S. B. Lee, John M. Moreland

Abstract

We have developed an ultra-sensitive torque magnetometer tailored to the study of thin-film interface magnetism and interlayer magnetic exchange coupling. The magnetometer was composed of an optical-fiber interferometer and a customized silicon cantilever that was fabricated using silicon micro-electromechanical system (MEMS) technology. The performance of the magnetometer was gauged by measureing the couplings of the Fe/Cr/Fe trilayer system deposited on a Si <110> substrate. The antiferomagnetic stacking of the Cr layers of the Fe/Cr/Fe system and the parallel or the antiparallel coupling between the bottom Fe and the top Fe layers with various Cr spacer thicknesses were monitored by using a MEMS torque magnetometer. We found short- (2.05 ML Cr spacer thickness) and long-period (13.80 ML Cr spacer thickness) oscillations of the interlayer exchange coupling of the Fe/Cr/Fe trilayer system.
Citation
Journal of the Korean Physical Society
Volume
53
Issue
4

Keywords

MEMS torque magnetometer, Cantilever, Interlayer exchange coupling

Citation

Min, D. , Lee, S. and Moreland, J. (2008), In-Situ Torque Magnetometry: Magnetic Coupling in Fe/Cr/Fe Thin-Film Systems, Journal of the Korean Physical Society (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created October 30, 2008, Updated October 12, 2021
Was this page helpful?