NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Spontaneous avalanche dephasing in large Rydberg ensembles
Published
Author(s)
Thomas L. Boulier, Eric Magnan, Carlos Bracamontes, James Maslek, Elizabeth Goldschmidt, Jeremey Young, Alexey Gorshkov, Steven Rolston, James V. Porto
Abstract
Strong dipole-exchange interactions due to spontaneously produced contaminant states can trigger rapid dephasing in many-body Rydberg ensembles [E. Goldschmidt et al., PRL 116, 113001 (2016)]. Such broadening has serious implications for many proposals to coherently use Rydberg interactions, particularly Rydberg dressing proposals. The dephasing arises as a runaway process where the production of the first contaminant atoms facilitates the creation of more contaminant atoms. Here we study the time dependence of this process with stroboscopic approaches. Using a pump-probe technique we create an excess "pump" Rydberg population, and probe its effect with a different "probe" Rydberg transition. We observe a reduced resonant pumping rate and an enhancement of the excitation on both sides of the transition as atoms are added to the pump state. We also observe a timescale for population growth significantly shorter than predicted by homogeneous mean-field models, as expected from a clustered growth mechanism where high-order correlations dominate the dynamics. These results support earlier works and confirm that the time scale for the onset of dephasing is reduced by a factor which scales as the inverse of the atom number. In addition, we discuss several approaches to minimize these effects of spontaneous broadening, including stroboscopic techniques and operating at cryogenic temperatures. It is challenging to avoid the unwanted broadening effects, but under some conditions they can be mitigated.
Boulier, T.
, Magnan, E.
, Bracamontes, C.
, Maslek, J.
, Goldschmidt, E.
, Young, J.
, Gorshkov, A.
, Rolston, S.
and Porto, J.
(2017),
Spontaneous avalanche dephasing in large Rydberg ensembles, Physical Review A
(Accessed October 10, 2025)