An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Terms of Deception: Exposing Obscured Financial Obligations in Online Agreements with Deep Learning (Extended Abstract
Published
Author(s)
Elisa Tsai, Anoop Singhal, Atul Prakash
Abstract
This paper investigates one type of social engineering scam, where unsuspecting users inadvertently consent to hidden financial obligations by performing routine online actions, such as making a purchase. Terms and conditions, often dense and overlooked, can be a vehicle for these scams, embedding deceptive or confusing terms to manipulate users. This paper highlights the suitability of a deep learning approach to address the wordplay and nuanced language used in these terms. We propose the design of TermLens, a browser plugin that leverages Large Language Models (LLMs) to detect obscured financial terms hidden within the fine print, a task that traditional security checks often miss. We show the feasibility of Termlens detecting obscured financial terms through a case study. We also discuss challenges and future plans.
Proceedings Title
IEEE 7th Deep Learning Security and Privacy Workshop
Tsai, E.
, Singhal, A.
and Prakash, A.
(2024),
Terms of Deception: Exposing Obscured Financial Obligations in Online Agreements with Deep Learning (Extended Abstract, IEEE 7th Deep Learning Security and Privacy Workshop, San Francisco, CA, US, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=957559
(Accessed January 14, 2025)