NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Towards Replacing Resistance Thermometry with Photonic Thermometry
Published
Author(s)
Nikolai Klimov, Thomas P. Purdy, Zeeshan Ahmed
Abstract
Resistance thermometry provides a time-tested method for taking temperature measurements that has been painstakingly developed over the last century. However, fundamental limits to resistance-based approaches along with a desire to reduce the cost of sensor ownership and increase sensor stability and depolyability has produced considerable interest in developing photonic temperature sensors. Here we demonstrate that silicon photonic crystal cavity-based thermometers can measure temperature with uncertainities of 175 mK (k = 1), where uncertainties are dominated by ageing effects originating from the hysteresis in the device packaging materials. Our results, a ≈ 4-fold improvement over recent devleopments, clearly demonstate the rapid progress of silicon photonic sensors in replacing legacy devices.
Klimov, N.
, Purdy, T.
and Ahmed, Z.
(2017),
Towards Replacing Resistance Thermometry with Photonic Thermometry, Sensors and Actuators A-Physical, [online], https://doi.org/10.1016/j.sna.2017.11.055
(Accessed October 9, 2025)