An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Tunneling characteristics and low-frequency noise of high-Tc superconductor/noble-metal junctions
Published
Author(s)
Yizi Xu, John (Jack) W. Ekin
Abstract
We report extensive measurements of transport characteristics and low-frequency resistance noise of c-axis yttrium-barium-copper-oxide (YBCO)/Au junctions. The dominant conduction mechanism is tunneling at low temperatures. The conductance characteristic is asymmetric, and the conductance minimum occurs at a nonzero voltage. These features can be qualitatively explained by modeling the YBCO/Au interface with a Schottky barrier. The model shows that the YBCO surface behaves like a p-type degenerate semiconductor, with a Fermi degeneracy of about 0.1 eV. The barrier height is approximately 1.0 eV. We present evidence that interface states and disorder play an important role in determining the conductance characteristics. Low-frequency noise measurements of these junctions reveal that junction noise is dominated by resistance fluctuations with a 1/f-like power spectrum over a wide range of temperature and bias voltage. For temperatures between 4.2 and 77 K, the junction noise can be parameterized in terms of a normalized resistance fluctuation: δR/Rapproximately equal}6.3 × 10-4/√–f, in units of Hz1⁄2, where f is the center frequency of the measurement bandwidth. At f= 10 Hz, for example, it is 2 × 10-4 Hz-1⁄2. This noise figure should prove to be useful for engineering design of high-T-c electronics. A more detailed analysis shows that at low temperatures the noise spectrum is characterized by random telegraph signals with a Lorentzian power spectrum, which can have a distribution of corner frequencies that mimics a 1/f dependence. The random telegraph signals provide evidence for the existence of localized states.
Citation
Physical Review B (Condensed Matter and Materials Physics)
Xu, Y.
and Ekin, J.
(2004),
Tunneling characteristics and low-frequency noise of high-T<sub>c</sub> superconductor/noble-metal junctions, Physical Review B (Condensed Matter and Materials Physics), [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=31796
(Accessed November 21, 2024)