NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Why are we concerned with large covariance matrices?
Published
Author(s)
Paul D. Hale, Andrew M. Dienstfrey, Chih-Ming Wang
Abstract
In order to promote discussion, we outline the two different paradigms for propagating uncertainties from the various waveform measurement impairments to the waveform parameters. The first method propagates uncertainty from the impairments directly to a specific parameter without explicit reference to the waveform. The second propagates uncertainty from the impairments to the waveform and then, using hte chain rule of derivatives, propagates uncertainty from the waveform to the parameter. The later, more general, method can generate a covariance matrix for the waveform that is order NxN. For N large, the problem becomes numerically intractable and statistical inference based on classical arguments can fail for M
Hale, P.
, Dienstfrey, A.
and Wang, C.
(2010),
Why are we concerned with large covariance matrices?, NIST, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906016, internal:/nist,gov
(Accessed October 15, 2025)