EXPANDING THE REALM OF POSSIBILITY

Aircraft Impact Analysis of the WTC Towers

NIST Symposium September 14, 2005

Aircraft Impact Analyses

Silicon Valley Office (SVO)

Aircraft Impact Analyses Objectives

- Perform aircraft impact analyses to obtain:
 - 1. Structural damage to the WTC towers produced by aircraft impacts.
 - 2. Estimates of jet fuel distribution.
 - 3. Estimates of debris distribution.
 - 4. Environment for fireproofing removal.
 - 5. Analysis of uncertainties in results.

Aircraft Impact Analyses Outline

- Part 1 Material Constitutive and Failure Modeling
- Part 2 WTC Tower Model Development
- Part 3 Aircraft Data Collection & Model Development
- Part 4 Component Impact Analyses
- Part 5 Subassembly Impact Analysis
- Part 6 Analysis of Aircraft Impact Conditions
- Part 7 Component/Subassembly Uncertainty Analyses
- Part 8 Global Impact Analyses

EXPANDING THE REALM OF POSSIBILITY

Part 1 Material Modeling

- Tower steel constitutive modeling
- Aircraft material models
- Concrete material models
- Weld and connection failure models

Steel Constitutive Model

- Piecewise Linear Plasticity Model
 - Yield stress dependence:
 - strain rate
 - plastic strain
 - Strain rate effects
 - Cowper & Symonds rate effects model used.
 - > High-rate data provided by NIST.
- Models validated against NIST material test data.

Yield Stress Variation with Effective Plastic Strain

Material Model Validation ASTM-A370 Tensile Specimen Model

Analysis of Material Testing Used to Validate the Constitutive Models

ASTM-370 Tensile Test Analysis Fine Mesh: 0.3 mm spacing

Analysis of a Material Test Including Necking and Failure

Material Model Validation ASTM-A370 75 ksi Tensile Test Comparison

- **Procedure:**
- Develop true stress-strain curve.
- Simulate material testing.
- Validate the model against engineering test data.

Silicon Valley Office (SVO)

Validated True Stress-Strain Curves

Constitutive Model Input for Mechanical Behavior

Mesh Refinement Effects Tensile Test for 75ksi Steel

Strain Rate Effects Cowper and Symonds Model

True Stress-Strain Curves Aircraft Aluminum Alloys

Lightweight Concrete Model

- Pseudo-tensor model selected for this program:
 - Good for low-confinement modeling.
 - Tabular rate effects modeling fit to data in literature sources.
 - Damage with softening and various failure/erosion options.
- Pseudo-tensor model was calibrated using a simulation of an unconfined compression specimen.

Silicon Valley Office (SVO)

Exterior Column Bolt Modeling

- Strength of the bolted connections is important for damage analyses.
- Detailed models of the bolts not feasible beyond component level analyses

Exterior Column Bolt Modeling

EXPANDING THE REALM OF POSSIBILITY

Part 2 WTC Tower Model Development

Automatic Model Generation

- Excel Visual Basic Tool
- Reads LERA database for dimensions
- Capabilities:
 - Exterior wall generation.
 - single panel
 - subassembly
 - > global
 - Core Column Generation
 - Automatically inserts bolts and boundary butt plates.
 - Controls mesh refinement for different regions

a to to a		-					u		•
A 1 Panel 2 1123	B C UPRSpiStr WRSpiStr	D Туре	E CollType	F Col1Fy1	G Col2Fy2	H JPRColSp	WRCols	J Col2Type	55
4 1	Town								55
7 8 9 Colu 10 Co 11 1 12 13 Colu	Multiple Panels Left Panel I18 Right Panel 124 Top Floor 100			Single Panel Panel Number Top Floor 97					Are
14 Spln 15 4 15	Boltom Floor	91	-	Botton	Floor	80		8	rocv
18 Splie	Find Devensio	8	Create Tru	e Grid Input	-	Cancel	_	V11/ 15	roov
20 21 Colu									

Approach selected to reduce the potential for model errors.

Exterior Panel Auto Generation

Panel Type 300-307

300 panel model shown

Panel Type 400-401

400 panel model shown

- Parameterized models developed for panel types.
- Parameters automatically extracted from database.

WTC 1 Impact Face Model

Spandrel Splice Connections

Silicon Valley Office (SVO)

Dimensions and Materials Extracted from the Database

Tower Model Development

- Connections are weak points for lateral impacts.
- Wide Flange to Wide Flange Splice.
 - Connection made with tied interface between splice plates and column ends.

Tower Model Development

- Box Column to Wide Flange Splice
 - Connection made with tied interface between column cap on BC and column end of WF

Tower Model Development

Core Floor Structure for 96th Floor

Tower Model Development: Core

Connection Details

Tower Model Development: Core

Tower Model Development: Truss Floor

Tower Model Development: 96th floor of WTC 1

Tower Model Development: 96th floor of WTC 1 including interior contents

Tower Model Development: 96th floor of WTC 1 including interior contents

Tower Model Development: 96th floor of WTC 1 including interior contents

Silicon Valley Office (SVO)

WTC 2 Global Tower Model Exterior Removed

WTC Tower Model Parameters

Summary of the global impact models for the WTC towers.

	WTC 1 Tower Model	WTC 2 Tower Model
Number of Nodes	1,300,537	1,312,092
Hughes-Liu Beam Elements	47,952	53,488
Belytschko-Tsay Shell Elements	1,156,947	1,155,815
Constant Stress Solid Elements	2,805	2,498

EXPANDING THE REALM OF POSSIBILITY

Part 3 767 Model Development

- Data collection for the 767-200ER
- Development of aircraft model
- Fuel Distribution Analysis

Aircraft Model Development: Boeing 767-200ER

- Aircraft structural information collected from various sources.
- Remaining data was obtained from measurements on 767.

Open Literature Data Sources

Airline Data

Commercially Available Geometry Models

Digimation Surface Model

Aircraft Inspection: Main Landing Gear

Aircraft Inspection: Ultrasonic thickness measurement of landing gear components

Nose gear measurement

Main landing gear beam measurement locations

Aircraft Inspection: Control Surfaces and Control Linkage

Passenger and Cargo Data From United and American Airlines

	AA 11	UAL 175
Passengers and Crew	14,720 lbs	9,410 lbs
Freight	7,972 lbs	16,970 lbs
Luggage: Cargo hold	1,150 lbs	1,390 lbs
Luggage: Carry on	1,620 lbs	1,010 lbs
Catering	5,234 lbs	-
Total	30,696 lbs	28,780 lbs

Engine Modeling: PW4000

Materials Received from Pratt & Whitney:

- PW4000 94 Inch Fan Secondary Flow and Lubrication Systems (CTC29748.20001020)
- The Jet Engine (S14345)
- PW4000/B747/767/ External Components Left Side (J38249)
- PW4000/B747/767/ External Components Right Side (J38249)
- PW4000 Engine Build Groups (ref. W058)
- PW4000 94-Inch Fan Engine (S12049)

Engine Model

	PW4000 Engine Model
No. Brick Elements	9,560
No. Shell Elements	54,788
Total Nodes	101,822
Preliminary Engine Model Mass	7,873 lbs
Adjusted Engine Model Mass	9,447 lbs

Boeing 767-200ER Aircraft Model

Aircraft Model

Internal Structure and Non-Structural Components

Boeing 767-200ER with Estimated Wing Deflection at Time of Impact

Silicon Valley Office (SVO)

Fuel Tank Capacity and Fuel Distribution

Tank capacity to Baffle Rib 18 is approximately the same volume as the fuel onboard at the time of impact.

Boeing 767-200ER with Fuel Load at Time of Impact

Boeing 767-200ER Aircraft Model Parameters

and the second sec	AA 11	UAL 175
No. Brick Elements	70,000	70,000
No. Shell Elements	562,000	562,000
No. SPH Fuel Particles	60,672	60,672
Total Nodes	740,000	740,000
Total Weight (Empty)	183,500 lbs	183,500 lbs
ULD/Cargo Weight	12,420 lbs	21,660 lbs
Cabin Contents Weight	21,580 lbs	10,420 lbs
Fuel Weight	66,100 lbs	62,000 lbs
Total Weight (Loaded)	283,600 lbs	277,580 lbs

Part 4 Component Impact Analyses

- Exterior columns, core columns, and floor assembly components.
- Engine and wing section impactors.

Component Level Analyses

- Primary objective is to develop the simulation techniques required for the global analysis of the aircraft impacts into the WTC towers.
 - Develop reduced FE models appropriate for high fidelity global impact analyses.

Primary Component Simulations:

- An exterior column impacted by an aircraft engine.
- An interior column impacted by an aircraft engine.
- An exterior column impacted by an aircraft wing segment.
- An exterior column impacted by an aircraft wing filled with fuel.
- Additional Component Simulations:
 - Floor system with concrete slab obliquely impacted by an engine.
 - Bolted column and spandrel connections.

Preliminary Component Analyses

- Detailed brick element column model.
- Shell elements for wing and fuel tank section.
- Fuel effects included.
 - Lagrangian fuel model.

- Failure modes of column analyzed.
- Model uses first estimate of material properties
 - 60 ksi yield Bilinear E-P column
 - 42 ksi yield Bilinear E-P spandrel
 - 30% failure strain

Preliminary Component Analysis

- Failure modes of column analyzed.
 - Shear failures of front plate.
 - Subsequent shear failure of back plate.
- Fuel overloads column welds
 - Subsequent analyses have no fuel for more subtle column response.

Fringes of Effective Plastic Strain. Fringe Levels 2.500e-01 2.250e-01 2.000e-01 1.750e-01 1.500e-01 1.250e-01 1.000e-01 5.000e-02 2.500e-02

0.000e+00

Component: External Column

Response Comparison [Displaying Contours of Resultant Displacement (m)]

Left View at 35 ms

ARA —

Coarse Shell Element Model

Core Box Column Impact

- Modeling Considerations
 - Column 801B, 77-80 Modeled
 - Impactor: Wing section with fuel
 - Standard Fuel density
 - 250 m/s impact (est. WTC 2 impact speed)
 - Impact on flange side
 - WTC-B impact scenario for 801B
 - BC treated by fixing ends of long column

Model Comparison

[Displaying Contours of Resultant Displacement (m)]

Engine & Exterior Wall

Three Panels Wide

Spandrel Centered Impact

Engine & Exterior Wall

Spandrel Centered Impact

Between Spandrel Impact

Impact Response at 80 ms

Silicon Valley Office (SVO)

Engine & Exterior Wall

Comparison of Various Engine Impact Conditions

Engine Impact Analysis

Initial Configuration

Impact Response at 90 ms

Combined Engine Impact Analysis – Exterior and Core Columns

Engine Impact Analysis

Combined Engine Impact Analysis – Exterior and Core Columns

Silicon Valley Office (SVO)

Wing Segment Component Analysis Two Exterior Panels

Wing Segment Component Analysis Two Exterior Panels

Empty Wing Section Impact 442 mph

Impact Response at 40 ms

Coarse Shell Element Wing Section Model

Silicon Valley Office (SVO)

Silicon Valley Office (SVO)

Treatment of Aircraft Fuel

- Fluid Structure Interaction (FSI) is difficult to model with traditional computational methods and requires special analysis techniques.
- FSI approach needs to capture:
 - Primary inertial affects of fuel impacting structural members.
 - Secondary fuel dispersion.
- 3 Options for this program:
 - Arbitrary Lagrangian-Eularian (ALE).
 - Smoothed Particle Hydrodynamics (SPH).
 - Lagrangian analysis with erosion (traditional approach).

Cannot solve fuel motions after initial impact.

Fuel Analysis Methodologies

- ALE Eulerian treatment of fuel with Lagrangian structural components.
 - Fluid motion represented with Euler equations (inviscid Navier-Stokes).
 - > Appropriate methodology for analysis of continuous fluid dynamics.
 - Large meshes are required for ALE fuel modeling.
 - Longer run times are required.
- SPH Mesh-Free model of fuel with Lagrangian structural components.
 - Smaller mesh is required: shorter run time.
 - SPH well suited for debris cloud calculations.
- Neither methodology includes physics of droplet formation, wetting of structures, or fuel combustion.

Wing Segment with ALE Fuel V = 500 mph

Wing Segment with SPH Fuel V = 500 mph

Wing Segment with Fuel Comparison V = 500 mph

SPH

ALE

EXPANDING THE REALM OF POSSIBILITY

Part 5 Subassembly Impact Analyses

Tower Subassembly Model

Silicon Valley Office (SVO)

Subassembly Engine Impact

- Engine deceleration produced by the interaction with:
 - Exterior wall
 - Truss floor
 - Internal contents
 - Core Column

Silicon Valley Office (SVO)

Subassembly Impact Analyses

Comparison of Engine and Fuel Momentum Transfer

EXPANDING THE REALM OF POSSIBILITY

Part 6 Analysis of Aircraft Impact Conditions

Definitions of the Aircraft Impact Parameters

Analysis of Aircraft Impact Conditions

- Video footage of the aircraft impacts were first used to assess the impact conditions
 - Two videos of WTC 1
 - Seven videos of WTC 2.
- A complex video analysis technique was first applied to generate initial estimates of orientation and location.
- Estimates from the video analysis were refined using the visible damage on the impact face of the towers.
- Aircraft speed was determined using a simplified video analysis.

Analysis of Aircraft Impact Conditions

Complex Motion Analysis Methodology:

Analysis of Aircraft Impact Conditions

Simplified Motion Analysis Methodology:

Speed = $\frac{(d_{34})}{(L_3+L_4)/2}$ (Actual plane length)(Image Rate)

Refinement of the Aircraft Impact Orientation and Location

- Damage pattern on the external panels was used to determine the impact location, orientation and trajectory within the bounds of the video analysis.
- Impact locations for the engines, wing tips and and tip of the vertical stabilizer is most clearly seen in the impact damage.
- Relative locations of wing, engine, and tail strike place constraints on possible combinations of orientation and trajectory.

Schematic of Impact Damage – WTC 1

Schematic of Impact Damage – WTC 2

🕀 ARA -

Silicon Valley Office (SVO)

Aircraft Impact Conditions

	Horizontal Location	Vertical Location		
AA 11 (WTC 1)	2.0 ± 3 ft. west of centerline	$1.6. \pm 4$ ft. above 96 th floor		
UAL 175 (WTC 2)	23.1 ± 3 ft. east of centerline	0.6 ± 4 ft. above 81^{\pm} floor		

1 6 - F	AA 11 (WTC 1)	UAL 175 (WTC 2)
Impact Speed (mph)	443 ± 30	542 ± 24
Vertical Approach Angle (Velocity vector)	10.6° ± 3° below horizontal (heading downward)	6°±2° below horizontal (heading downward)
Lateral Approach Angle (Velocity vector)	$180.3^{\circ} \pm 4^{\circ}$ clockwise from Structure North ¹	$15^{\circ} \pm 2^{\circ}$ clockwise from Structure North ¹
Vertical Fuselage Orientation Relative to Trajectory	2° nose-up from the vertical approach angle	1° nose-up from the vertical approach angle
Lateral Fuselage Orientation Relative to Trajectory	0° clockwise from lateral approach angle	-3° clockwise from lateral approach angle
Roll Angle (left wing downward)	25° ± 2°	$38^{\circ} \pm 2^{\circ}$

1. Structure north is approximately 29 degrees clockwise from True North.

Part 6 Uncertainty Analyses

- Component Uncertainty Analyses
- Subassembly Uncertainty Analyses

Silicon Valley Office (SVO)

Parameter Variation

Engine – Core Column

Un	certainty Parameters	Parameter ID	Minimum Value	Baseline Value	Maximum Value
Flight	Speed	1	392 mph	485 mph	579 mph
Parameters	Vertical Impact Location	2	0.00 ft	0.00 ft	2.03 ft
	Horizontal Impact Location	3	0.00 ft	0.00 ft	3.00 ft
100	Material Assignment Set ¹	4	ŕ	1	2
Engine	Material Strength	5	65%a	100%	135%
Parameters	Failure Strain	6	50%a	100%	150%
	Strain Rate Effects	7	10%	100%	1000%
1	Material Strength	8	85%	100%	115%
Tower	Failure Strain	9	50%	100%	1.50%
Parameters	Strain Rate Effects	10	1.0%	100%	1000%
	Erosion Parameter ¹	11	1	1	2
Model	Contact Parameter ¹	12	1	1	2
Parameters	Friction Coefficient	13	0,0	0.3	0.6

Engine – Core Column

Fractional Factorial 2¹³⁻⁹ Experimental Design

Measures of Core Column Damage

Parameter Variation

Wing Segment – Exterior Panel

Unce	ertainty Parameters	Parameter ID	Minimum Value	Baseline Value	Maximum Value
Flight	Speed	1	413 mph	443 mph	521 mph
Parameters	Lateral Approach Angle	2	-4.0°	0.0°	4.0°
	Material Strength	3	65%	100%	135%
Wing	Failure Strain	4	50%	100%	150%
Parameters	Rivet Strength	5	50%	100%	150%
	Weight Factor	6	1.5	2.0	3.0
Tower	Material Strength	7	85%	100%	115%
Parameters	Failure Strain	8	50%	100%	150%
	Strain Rate Effects	9	10%	100%	200%
	Erosion Parameter ¹	10	1	1	2
Model	Erosion Strain	11	0.2	0.3	0.4
Parameters	Contact Parameter ¹	12	1	1	0
	Friction Coefficient	13	0.0	0.3	0.6

Main Effects Plot Wing Segment – Exterior Panel

Engine-Subassembly Uncertainty Analysis

Significant Modeling Parameters for the Global Impact Analysis

		Engine – Core	Wing Section -	Engine –
		Column	Exterior Panel	Subassembly
		Component	Component	Impact
	Impact velocity		✓	√-
Flight	Vertical impact location			✓
Parameters	Vertical Approach Angle			✓
	Lateral Approach Angle			✓-
	Aircraft materials strength	✓	✓	
Aircraft	Aircraft materials failure strain		√ -	
Parameters	Wing section weight		✓	
	Engine materials set	√ _		
	Tower materials strength			✓
Tower	Tower materials failure strain	✓	√ _	√ _
Parameters	Tower materials strain rate effects	✓		√ _
	Live load weight			✓-
Model	Friction coefficient		√ _	
	Erosion Parameter		✓	

EXPANDING THE REALM OF POSSIBILITY

Part 7 Global Impact Analyses

Global Impact Analyses

	WTC 1 Tower Model	WTC 2 Tower Model
Number of Nodes	2,068,736	2,110,970
Belytschko-Tsay Shell Elements	1,682,615	1,716,249
Constant Stress Solid Elements	73,189	72,906
Hughes-Liu Beam Elements	47,952	53,488
SPH Fuel Particles	60,672	60,672

Global Impact Analyses

WTC 1

WTC 2

Global Impact – WTC 1

Time = 0

	 	N	 1979-1971		1		 880	 	 81 4
			<u> </u>					 	
- Andrew - Andrew -			 Aiaaaiaaa	-			 -		
			 A A A A IA A A A 					 	
-			<u>n a naia a n</u> N a na a a a a					ARLANDA 	
			 				 19-111		
						Ħ	 		
	ł							 	

Silicon Valley Office (SVO)

Global Impact – WTC 1

Time = 0

Global Impact – WTC 2

Time = 0

z k_x

		H HH			
	i nd nd	u diwêru	he B eerl	daamadi	
 		- de de s		domet	-
F	-			1	
				da met	
		-			
					-
		n deedaa	in fansi		
 Ŀ			·		
 			J-J]	T	
inno i r	i an the state of		hainmi	ARTINI	
	_				

Global Impact – WTC 1

Time = 0

¥ ×

Aircraft Breakup and Momentum Loss – WTC 1

WTC 1 Core Column Damage

Silicon Valley Office (SVO)

WTC 1 Floor Slab Damage

(a) Floor 94 slab damage

(c) Floor 96 slab damage

(b) Floor 95 slab damage

(d) Floor 97 slab damage

	9.8	rising						1000		-		100001
Testai de S	14 1 200	1,10	10000	1.12		1		1.1	F	1. 1		
and the second	et. 3 3	A 101		1			-	10 1	1 F	100	10	
and the second		P.I. I.	2010 2013			11	1.1					-
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	19 C.			1	Acast	1		1	E-	-	- Inu	uп
		1 17-1					-		-	12	100	
NG - 12 12 64		No.	S Malan	di Sate	1.200	1	1-1-	1		IC	T	1.
				-								n.
		(This star	教師同時是			1	11.	10-2.4			기를	n
							94		1		l le	IL.
	10 11 1.	1. 211	C.L.I.	AN AN	ALC: N	8				STR	Nin	100
		Terror -	D III I		10 M.T		1		\mathbb{Z}_{2}	1	RI	n.iu
	Same Ser	1 mil					100	125	P	94	1 H	N
	P	- delesis					the second		ALC:	1 7		- 11
	1. 1. 1. 1. 1. 1. 1.	THE .	A AL	-	Carles		3	122				
		Aller	WE HAR			Sel.	1	1.50				1.5.
		L RE	The second		10.00	्रह	120		1		k n n	IFIM
1. A	$(1,1)_{n} \in \mathbb{R}^{n}$	1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	IVA EX	Ner L	-	-		1-	31		111	TIM
			加查考					D.P.	51	- P		
			<u>)</u>			14.3.4				1.	. 1	
1 1 18	1.10						. W	12.	1			
	3	24	1 22	6.4.5	1. 12 M	1	100	10				1.1

(Floor slab removed from view)

1. 18 B 1. 1

Time = 0

Initial impact configuration

Calculated impact response

Time = 0.715

Calculated impact response (fuel removed)

Silicon Valley Office (SVO)

Time = 0.715

Calculated aircraft debris

Impact Damage on the Tower Exterior Impact Face WTC 1 WTC 2

Schematic of actual damage

Input Parameters for Additional WTC 1 Global Impact Analyses

Analysis Parameters		Base case	More Severe	Less Severe	
Flight	Impact Velocity	443 mph	472 mph	414 mph	
Parameters	Trajectory - pitch	10.6°	7.6°	13.6°	
	Trajectory - yaw	0.0°	0.0°	0.0°	
	Orientation - pitch	8.6°	5.6°	11.6°	
	Orientation - yaw	0.0°	0.0°	0.0°	
Aircraft	Weight	100 percent	105 percent	95 percent	
Parameters	Failure Strain	100 percent	125 percent	75 percent	
Tower	Failure Strain	100 percent	80 percent	120 percent	
Parameters	Live Load Weight ¹	25 percent	20 percent	25 percent	

1. Live load weight expressed as a percentage if the design live load.

Calculated WTC 1 Core Damage

Calculated base case impact damage

Calculated less severe impact damage

Calculated more severe impact damage

Silicon Valley Office (SVO)

WTC 1 Exterior Damage Comparison

Input Parameters for Additional WTC 2 Global Impact Analyses

Analysis Parameters		Base Case	More Severe	Less Severe	
Flight	Impact Velocity	546 mph	570 mph	521 mph	
Parameters	Trajectory - pitch	6.0°	5.0°	8.0°	
	Trajectory - yaw	13.0°	13.0°	13.0°	
	Orientation - pitch	5.0°	4.0°	7.0°	
	Orientation - yaw	10.0°	10.0°	10.0°	
Aircraft	Weight	100 percent	105 percent	95 percent	
Parameters	Failure Strain	100 percent	115 percent	75 percent	
Tower	Contents Strength	100 percent	80 percent	100 percent	
Parameters	Failure Strain	100 percent	90 percent	120 percent	
	Live Load Weight ¹	25 percent	20 percent	25 percent	

1. Live load weight expressed as a percentage of the design live load.

Calculated Core Impact Damage to WTC 2 Calculated base case impact damage

Calculated less severe impact damage

Calculated more severe impact damage

Exterior Wall Damage Comparison for WTC 2

Silicon Valley Office (SVO)

Summary

- Component, subassembly and global aircraft impact analyses were performed on WTC 1 and WTC 2.
- Global impact damage comparisons with available observable evidence was good.
- Predictions of damage to the tower core columns:

WTC Impact Investigation	WTC 1 Core Column Damage	WTC 2 Core Column Damage		
NIST Base Case	3 Failed	5 Failed		
Impact Analysis	Plus 4 Heavily Damaged	Plus 4 Heavily Damaged		
NIST More Severe	6 Failed	10 Failed		
Impact Analysis	Plus 3 Heavily Damaged	Plus 1 Heavily Damaged		
NIST Less Severe	1 Failed	3 Failed		
Impact Analysis	Plus 2 Heavily Damaged	Plus 2 Heavily Damaged		

