NCST Investigation of the Champlain Towers South Collapse

Investigation Overview and Update

Judith Mitrani-Reiser Lead Investigator Glenn R. Bell Associate Lead Investigator

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

September 12, 2024

CTS Investigation: Years 1-3+ Activities

NIST

CTS Investigation: Years 1-3+ Activities

NIST

Theme 1: *Timeline and Evidence Collection*

Judith Mitrani-Reiser, N. Emel Ganapati, David Goodwin, Christopher Segura, Jonathan Weigand, Kam Saidi, Jack Moehle Theme 2: Analysis and Testing Updates

Fahim Sadek, James Harris, Christopher Segura, Kenneth Hover, Jack Moehle, Sissy Nikolaou,

Theme 3: Analysis of Failure Hypotheses

Glenn Bell, Fahim Sadek, Georgette Hlepas, Scott Jones, James Harris, Youssef Hashash

Theme 1: *Timeline and Evidence Collection*

Judith Mitrani-Reiser, N. Emel Ganapati, David Goodwin, Christopher Segura, Jonathan Weigand, Kam Saidi, Jack Moehle Theme 2: Analysis and Testing Updates

Fahim Sadek, James Harris, Christopher Segura, Kenneth Hover, Jack Moehle, Sissy Nikolaou, Theme 3: Analysis of Failure Hypotheses

Glenn Bell, Fahim Sadek, Georgette Hlepas, Scott Jones, James Harris, Youssef Hashash

Drawing Annotations by CTS Resident

(Original Drawing Source: CTS Receiver)

Judith Mitrani-Reiser, N. Emel Ganapati, David Goodwin, Christopher Segura, Jonathan Weigand, Kam Saidi, Jack Moehle Theme 2: Analysis and Testing Updates

Fahim Sadek, James Harris, Christopher Segura, Kenneth Hover, Jack Moehle, Sissy Nikolaou, Theme 3: Analysis of Failure Hypotheses

Glenn Bell, Fahim Sadek, Georgette Hlepas, Scott Jones, James Harris, Youssef Hashash

Theme 1: Timeline and Evidence Collection

Judith Mitrani-Reiser, N. Emel Ganapati, David Goodwin, Christopher Segura, Jonathan Weigand, Kam Saidi, Jack Moehle Theme 2: Analysis and Testing Updates

Fahim Sadek, James Harris, Christopher Segura, Kenneth Hover, Jack Moehle, Sissy Nikolaou,

Theme 3: Analysis of Failure Hypotheses

Glenn Bell, Fahim Sadek, Georgette Hlepas, Scott Jones, James Harris, Youssef Hashash

CTS Investigation: April 2024 Historical Wind Study

Source: NIST

CTS Investigation: Years 1-3+ Activities

 Co Su Cru Es² De Hy Cru Re Fu 	llected Physical Evidenc bsurface Investigation eated Investigation Plan tablished Team Leaders veloped Failure potheses eated Collapse Timeline ceived Congressional nds	e Reco Spe Reco Com Proj Acq Add Con Corri Mod	eived Court-1 cimens and T ords npleted Wave pagation Test uired & Move litional Ware iducted Reco rosion Studie deling, & Inte	Transferred est ed into house rds Review, s, Collapse rviews	 La La Cr M Co Te Co Si U 	aunched Invas aunched Struc reated Tower lodel onducted Me esting of Conc ompleted 3D mulations pdated Collap	sive Testing ctural Testing Collapse chanical crete Cores Slice SSI ose Timeline		 Completed Tests of Rei Consolidate Physical Evi OMB Appro Launched S Materials T 	Mechanical nforcing Steel ed & Scanned dence wed Instruments ubsurface ests	
YR 1	Jun-DecJan-Jun20212022	YR 2	Jul-Dec Ja 2022 2	n-Jun 023	/R 3	Jul-Dec 2023	Jan-Mar 2024	Mar-Apr 2024	May-Jun 2024	YR 3	Jul-Aug 2024
 Too De Str Sca Evi De Init 	ok Custody of Evidence veloped Baseline uctural Model nned Warehouse & dence veloped 3D Model iated Corrosion Studies	 Se Via Re To To M Su 	earched for C deo Footage eleased Samp own of Surfsic ook Detailed S easurements ummarized Pr	rS Security les to le Slab eliminary	• (5 • E • (• (• () • ()	Cast Specimer Scale Structur Enhanced/Ana Jpdated 3D N Conducted Ac Corrosion Tes Continued Me	ns for Full- al Tests alyzed Videos 1odel celerated ts echanical	 NCST Pub Conducte Column T Complete Wind Stur Launched Research 	lic Meeting d First Slab- est d Historical dy Archival of Records		

CTS Investigation: May 2024 Evidence/Warehouse Scans

CTS Investigation: June 2024 Mechanical Tests

NIST

CTS Investigation: Years 1-3+ Activities

 Col Sub Cree Esta Dev Hyp Cree Reco Fur 	lected Phy osurface In ated Invest ablished Tr veloped Fa ootheses ated Colla ceived Con nds	vsical Evidence ovestigation stigation Plan eam Leaders ailure pse Timeline ogressional	e	 Received Conspecimens a Records Completed Ward Propagation Acquired & Madditional Ward Conducted Ray Corrosion State Modeling, & 	urt-Transferred nd Test Vave Tests Aoved into /arehouse ecords Review, udies, Collapse Interviews		 Launched I Launched I Created To Model Conducted Testing of Completed Simulation Updated C 	Invasive Tes Structural T ower Collaps I Mechanica Concrete Co I 3D Slice SS Is Collapse Tim	sting esting se al ores 51 eline		 Completed Tests of Rei Consolidate Physical Evi OMB Appro Launched S Materials T 	Mechanical nforcing Steel d & Scanned dence wed Instrumen ubsurface ests	ıts
YR 1	Jun-Dec 2021	Jan-Jun 2022	YR	2 Jul-Dec 2022	Jan-Jun 2023	YR 3	Jul-Dec 2023	J	an-Mar 2024	Mar-Apr 2024	May-Jun 2024	YR 3	Jul-Aug 2024
 Too Dev Stru Scar Evic Dev Initi Dev Stru 	k Custody eloped Ba ictural Mo nned Ware lence eloped 3D ated Corro eloped Inv ictural Tes	of Evidence seline del ehouse & O Model osion Studies vasive & ting Plans		 Searched fe Video Foot Released S Town of Su Took Detai Measurem Summarize Observatio Checks 	or CTS Security age amples to rfside led Slab ents d Preliminary ns from Code		 Cast Spec Scale Stru Enhanced Updated 3 Conducte Corrosion Continued Testing of Steel Rein 	imens for F ictural Tests I/Analyzed N 3D Model d Accelerat d Accelerat t Tests d Mechanica f Concrete C iforcing Bar	ull- s Videos ed al Cores & s	 NCST Pu Conduct Column Complet Wind Str Launche Research 	blic Meeting ed First Slab- Test ed Historical udy d Archival n of Records	 Relaunche Complete Tests & M Tests of Conductee Slab-Colur Evaluated 	ed Interviews d Column lechanical oncrete Cores d First Beam- mn Joint Test I Hard Drives

CTS Investigation: July 2024 Structural Tests at UMN

CTS Investigation: August 2024 Structural Tests at UW

NIST

NIST Engineering Laboratory (EL)

Structures Group (MSSD) Infrastructure Materials Group (MSSD) Earthquake Engineering Group (MSSD) Community Resilience Group (MSSD) Disaster Statutory Programs (MSSD) Intelligent Systems & Fire Research Divisions EL's Data, Security, Technology Group EL's Applied Economics Office

Federal

Federal Emergency Mgmt. Agency U.S. Army Corps of Engineers U.S. Geological Survey National Science Foundation Federal Bureau of Investigation Department of Defense NOAA's National Weather Service Bureau of Reclamation

NOAA = National Oceanic and Atmospheric Administration

Collaborate Coordinate Cooperate

NIST

Physical Measurement Laboratory Materials Measurement Laboratory Public Affairs Office Office of Chief Counsel Program Coordination Office Management and Organization Office Acquisition & Agreements Mgmt. Office ITL's Statistical Engineering Division

Local and State

Miami-Dade County Mayor's Office, Fire, Police, and Building Departments Town of Surfside City of Miami Beach Florida Division of Emergency Mgmt. Florida DOT and State Attorney's Office Virginia Beach Fire Department USAR Task Forces

DOT = Department of Transportation

USAR= Urban Search & Rescue

CTS Investigation: FY22-24 Budget & Contracts Overview

Status	Contract	Contractor(s)	Project(s) Supported	
Modification (3/2024)	Evidence Collection Leadership & Support	Florida International University (FIU)	 Co-leadership for P2 P1, P2, P3, P4, P5, P6, P7 	FY22-FY23 CTS Investigation
Modification (4/2024)	Invasive Testing Support	Applied Research Associates (ARA)	• P2, P4	Appropriated Funds Spent
Modification (5/2024)	Full-Scale Structural Testing	University of Washington (UW)	• P6	Labor: \$ 7.5M (34%) Other Objects*: \$ 15.5M (66%)
Modification (5/2024)	Geotechnical Engineering Project Leadership	University of Illinois, Urbana- Champaign (UIUC)	Co-leadership for P5	*contracts, equipment, travel, misc
Modification (5/2024)	Evidence Storage Management & Protection	Miami-Dade County	• P7	
New Contract (7/2024)	Geographic Information System Software	ArcGIS	• P3	FY23-24 Disastor Supplemental Fund
New Contract (7/2024)	Building & Site History Support	J.R. Harris & Company	Co-leadership for P1P6	Spent to Date
Modification (8/2024)	Steel Corrosion Expertise	Tourney Consulting Group	• P4	Labor: \$ 3.1M (32%) Other Obiects*: \$ 6.5M (68%)
Modification (8/2024)	Geotechnical Engineering Support	Geocomp	• P5	*contracts, equipment, travel, misc
New Contract (9/2024)	Create 3-D building information model	Fluency Architecture & Design	• P3	

NIST Seeks Additional Data

Resilience

Search NIST

https://www.nist.gov/disaster-failure-studies/data-submission-portal

DISASTER & FAILURE STUDIES

About the Disaster & Failure Studies Program

National Construction + Safety Team (NCST)

Champlain Towers South Collapse NCST

Investigation

Hurricane Maria Program

Joplin Tornado NCST Investigation

World Trade Center NCST Investigation

Studies by Hazard Types + Impacts &

Recommendations

Data Submission Portal

Data Archive Recent Activities FAQs

Data Submission Portal

General Overview

Traducción al español

Q

≡ Menu

Disasters and failure events provide important opportunities for scientists and engineers at the National Institute of Standards and Technology (NIST) to learn how we can improve the safety of buildings, their occupants, and emergency responders. NIST has studied and investigated more than 50 earthquakes, hurricanes, building and construction failures, tornadoes, and fires since 1969. The goal for these post-event assessments is to recommend improvements to building codes, standards, and practices. The Disaster and Failure Studies Program provides leadership, coordination and management for all disaster studies at NIST.

To fully understand a damaging event, NIST must gather all possible evidence, including photos, videos, or other documentation that may be owned and held by the public that contain clues about the event, the buildings affected, or the emergency response. For this purpose, NIST established the NIST Disaster Data Portal to serve as an entry point for the general public and other stakeholders to upload files for investigations and studies of disaster and failure events. The Portal helps ensure that this valuable information is organized and maintained to enable study, analysis, and comparison with subsequent severe disaster and failure events.

Click on the button below to submit data including photos, video, and other documentation associated with a disaster or failure event. Submitters will be asked to complete a form for each submission that includes a description of the data, credits, and permissions.

Access the Data Portal

Disclaimers for Presentations

IMPORTANT: ALL DATA ARE PRELIMINARY

- These presentations describe preliminary data gathered to date as well as preliminary analyses of these data. Data and analyses are subject to change.
- Once all data are finalized and analyzed, they will inform a broader understanding of the likely technical cause or causes of the collapse – and NIST's findings and recommendations.
- These presentations do not constitute NIST findings or recommendations.
- All survey and interview data collection included a consent process that specifies the allowable uses of data and protections of respondents.
- Copyrighted content (such as photographs) appearing in these presentations is used with permission; reproduction, redistribution or reuse may require copyright holder permission, including for content with anonymous attribution/credit.
- Every reasonable effort has been made to identify copyright holders for content (such as photographs) appearing in these presentations.

Champlain Towers South Investigation Failure Analysis by the Numbers (investigation to date)

300 +

POTENTIAL STRUCTURAL FAILURE POINTS **BEING ANALYZED FOR 25 FAILURE HYPOTHESES**

20,000+

RECORDS USED TO ESTABLISH THE BUILDING'S HISTORY AND PRECOLLAPSE CONDITIONS

~1,080

14

STRUCTURAL MATERIALS TESTS COMPLETED ON CONCRETE AND REINFORCEMENT SAMPLES EXTRACTED FROM THE BUILDING

Tens of 1000's

OF ADDITIONAL CIVIL LITIGATION RECORDS **RECEIVED SINCE MARCH 2024**

108

GEOTECHNICAL MATERIALS TESTS COMPLETED OR UNDERWAY ON SOIL/ROCK, FOUNDATION, AND GROUNDWATER SAMPLES

FINITE ELEMENT MODELS

IN ACTIVE USE FOR STRUCTURAL AND GEOTECHNICAL ANALYSES

from Noun Project

Champlain Towers South Investigation Schedule Impacts

- 1. Programmatic Challenges
- 2. Technical Challenges

Champlain Towers South Investigation Schedule Impacts

NIST

1. Programmatic Challenges

Structural Laboratory Slab-Column Tests

• Time in working through challenges of a complex, large scale test program

Geotechnical Program

Loss of NIST key geotechnical staff
 member

Post-test condition of slab-column connection tested, with corroded reinforcement.

Computational model with substructural parameters (soil, rock, foundation) updated with input and uncertainties from lab tests.

Social Sciences Program

- Extended time required to customize the interview instruments for each stakeholder and have them approved
- Interviews paused for the six weeks surrounding the collapse anniversary
- Extended time to access local government records for archival research

Interview in progress.

Source all images: NIST

Champlain Towers South Investigation Schedule Impacts

2. Technical Challenges

Low Strength Test Results

Example foundation pile-shaft core with a low compressive strength test result.

Uncertainty Quantification

Compression strength tests of concrete cores with variable moisture content.

Specimen Collection Bias

Sample of concrete reported to be "crumbly" by personnel working at collapse site.

Source all images: NIST

NIST

Building & Code History

IIInnnn

Tens of thousands of additional civil litigation files transferred to NIST since March 2024.

New digital evidence contributed to mapping of construction joints in pool deck.

Source: American Concrete Institute

Technical inquiries and archival research shed light on 1980s design/construction practice in South Florida.

Detailed measurements used to analyze compliance.

Preliminary Analysis Results

Adapted by NIST (Original Source: CTS Receiver)

Records used to populate timeline of pool deck renovations.

Evidence Collection & Preservation

Phase 5 Extraction 187 cores extracted since March

2024 resulting in 235 testable samples.

593 Tests Completed for Mechanical Properties of Concrete

183 Tests Completed for Mechanical Properties of Reinforcing Steel

Completed Forensic Analysis of Hard Drives

Identified Additional Security Cameras in Proximity of CTS

Source all images: NIST

Evidence Collection & Preservation

Interviews Resumed by FIU Social Science Team

Archival Research

Recent Uptick in Submissions to NIST's DFS Data Submission Portal

About the Disaster & Failure Studies Program	Data Submission Portal							
National Construction +								
salety learn (NCST)	General Overview							
Collapse NCST	Traducción al español							
nvestigation	Disasters and failure events provide important opportunities for scientists and engineers at the National Institute of Standards							
furricane Maria Program	studied and investigated more than 50 earthquakes, hurricanes, building and construction failures, tornadoes, and fires since							
Ioplin Tornado NCST	1969. The goal for these post-event assessments is to recommend improvements to building codes, standards, and practices. The							
nvestigation	Disaster and Failure Studies Program provides leadership, coordination and management for all disaster studies at NIST.							
nvestigation	To fully understand a damaging event, NIST must gather all possible evidence, including photos, videos, or other documentation							
tudies by Hazard Types +	that may be owned and held by the public that contain clues about the event, the buildings affected, or the emergency							
maasta 8	response. For this purpose, NIST established the NIST Disaster Data Portal to serve as an entry point for the general public and other stakeholders to unlead files for investigations and studies of disaster and failure quests. The Portal helps oncurs that this							
Recommendations	valuable information is organized and maintained to enable study, analysis, and comparison with subsequent severe disaster and							
ata Submission Portal	failure events.							
ata Archive +								
Recent Activities								
40s	Click on the button below to submit data including photos, video, and other documentation associated							
	with a disaster or failure event. Submitters will be asked to complete a form for each submission that							

Source all images: NIST

Remote Sensing & Data Visualization

6 2

15,035 Images & Videos Tagged in Griffeye Database

LiDAR Scan of South Basement Wall

Continued Population of Data Visualization Tool

Materials Science

Phase 5 Extraction

187 cores extracted since March 2024 resulting in 235 testable samples.

Core check-in and NDT.

Approx. 300 Petrographic, Chemical, and Durability Related Property Tests of Structural Concrete

Geospatial Mapping of Concrete Properties

Test for resistance to chloride ion penetration.

collapsed under building. Treated as **Pool Deck**

Concrete mapping zones.

Concrete petrography.

Source all images: NIST

Pile Core Strength

Engineering

Soil-Structure Computer

Simulation

Geotechnical

Pile Core Elastic Parameters

After Testing

Source all images: NIST

NIST

Structural Engineering

NIST

Structural Laboratory Tests

Laboratory slab-beam-column tests. (1 of 2 tests in progress)

Laboratory column tests, (3 of 3 complete)

Source all images: NIST

Champlain Towers South Investigation Next Six Months

NCST Investigation of the Champlain Towers South Collapse

Investigation Overview & Update

Judith Mitrani-Reiser Lead Investigator judith.mitrani-reiser@nist.gov Glenn R. Bell Associate Lead Investigator glenn.bell@nist.gov

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Submit relevant information to NIST: disaster@nist.gov https://www.nist.gov/disaster-failure-studies/data-submission-portal