ISO/TC 308 – Chain of custody: Focuses on tracking recycled polymers through the value chain to ensure recycled content claims are reliable.
Beers, K., Schumacher, K., Migler, K., Morris, K., & Kneifel, J. (2022). An Assessment of Mass Balance Accounting Methods for Polymers Workshop Report. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1500-206
Escoto, X., Gebrehewot, D., & Morris, K. C. (2022). Refocusing the barriers to sustainability for small and medium-sized manufacturers. Journal of Cleaner Production, 338, 130589. https://doi.org/10.1016/j.jclepro.2022.130589
Raman, A. S., Morris, K. C., & Haapala, K. R. (2023). Reusing and Extending Standards-Based Unit Manufacturing Process Models for Characterizing Sustainability Performance. Journal of Computing and Information Science in Engineering, 23(2), 021005. https://doi.org/10.1115/1.4054487
Reslan, M., Last, N., Mathur, N., Morris, K. C., & Ferrero, V. (2022). Circular Economy: A Product Life Cycle Perspective on Engineering and Manufacturing Practices. Procedia CIRP, 105, 851–858. https://doi.org/10.1016/j.procir.2022.02.141
Mass Spectrometry Data Center - This resource provides mass spectral libraries and software tools for identifying small molecule compounds. It is relevant to plastics formulation and additive research.
Hybridized Plastics Measurement Platforms - For use in post-consumer plastics.
Burkey, A. A., Fischbach, D. M., Wentz, C. M., Beers, K. L., & Sita, L. R. (2022). Highly Versatile Strategy for the Production of Telechelic Polyolefins. ACS Macro Letters, 11(3), 402–409. https://doi.org/10.1021/acsmacrolett.2c00108
Ivancic, R. J. S., Orski, S. V., & Audus, D. J. (2022). Structure–Dilute Solution Property Relationships of Comblike Macromolecules in a Good Solvent. Macromolecules, 55(3), 766–775. https://doi.org/10.1021/acs.macromol.1c02271
Kotula, A. (2020). A frequency-dependent effective medium model for the rheology of crystallizing polymers. Journal of Rheology, 64(3), 505–515. https://doi.org/10.1122/1.5132407
Kotula, A. P., Orski, S. V., Brignac, K. C., Lynch, J. M., & Heilala, B. M. J. (2022). Time-gated Raman spectroscopy of recovered plastics. Marine Pollution Bulletin, 181, 113894. https://doi.org/10.1016/j.marpolbul.2022.113894
Kotula, A. P., & Migler, K. B. (2018). Evaluating models for polycaprolactone crystallization via simultaneous rheology and Raman spectroscopy. Journal of Rheology, 62(1), 343–356. https://doi.org/10.1122/1.5008381
Kotula, A. P., Snyder, C. R., & Migler, K. B. (2017). Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer, 117, 1–10. https://doi.org/10.1016/j.polymer.2017.04.006
McIlroy, C., Seppala, J. E., & Kotula, A. P. (2019a). Combining Modeling and Measurements To Predict Crystal Morphology in Material Extrusion. In J. E. Seppala, A. P. Kotula, & C. R. Snyder (Eds.), ACS Symposium Series (Vol. 1315, pp. 85–113). American Chemical Society. https://doi.org/10.1021/bk-2019-1315.ch006
McIlroy, C., Seppala, J. E., & Kotula, A. P. (2019b). Combining Modeling and Measurements To Predict Crystal Morphology in Material Extrusion. In J. E. Seppala, A. P. Kotula, & C. R. Snyder (Eds.), ACS Symposium Series (Vol. 1315, pp. 85–113). American Chemical Society. https://doi.org/10.1021/bk-2019-1315.ch006
Northcutt, L. A., Orski, S. V., Migler, K. B., & Kotula, A. P. (2018a). Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer, 154, 182–187. https://doi.org/10.1016/j.polymer.2018.09.018
Northcutt, L. A., Orski, S. V., Migler, K. B., & Kotula, A. P. (2018b). Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer, 154, 182–187. https://doi.org/10.1016/j.polymer.2018.09.018
Roy, D., Kotula, A. P., Natarajan, B., Gilman, J. W., Fox, D. M., & Migler, K. B. (2018). Effect of cellulose nanocrystals on crystallization kinetics of polycaprolactone as probed by Rheo-Raman. Polymer, 153, 70–77. https://doi.org/10.1016/j.polymer.2018.08.007
Schumacher, K. (2022). Facilitating a Circular Economy for Textiles Workshop Report (NIST SP 1500-207; p. NIST SP 1500-207). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1500-207
Schumacher, K., & Green, M. L. (2021). Circular Economy in the High-Tech World Workshop Report. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1500-204
Schumacher, K., & Green, M. L. (2022). Circular Economy in a High-Tech World. Circular Economy and Sustainability. https://doi.org/10.1007/s43615-022-00220-7
Schumacher, K., and Forster, A.L. "Textiles in a Circular Economy: An Assessment of the Current Landscape, Challenges, and Opportunities." Frontiers in Sustainability: 146. https://doi.org/10.3389/frsus.2022.1038323
Mass Spectrometry Data Center - This resource provides mass spectral libraries and software tools for identifying small molecule compounds. It is relevant to plastics formulation and additive research.
Partner Product: Polymer Kit 1.0: Analytical Standards for Plastics Analysis - A kit containing reference polymers commonly found in the environment designed to help labs study plastic pollution. A product of the Hawai'i Pacific University Center for Marine Debris Research
Petersen, Elijah. J., Barrios, A.C., Bjorkland, R., Goodwin, D.G., Li, J., Waissi, G., Henry, T. (2022). Evaluation of bioaccumulation of nanoplastics, carbon nanotubes, fullerenes, and graphene family materials. Environment International, 21 November 2022, 107650. https://doi.org/10.1016/j.envint.2022.107650
Petersen, E. J., Kennedy, A. J., Hüffer, T., & von der Kammer, F. (2022). Solving Familiar Problems: Leveraging Environmental Testing Methods for Nanomaterials to Evaluate Microplastics and Nanoplastics. Nanomaterials, 12(8), 1332. https://doi.org/10.3390/nano12081332
Petersen, Elijah. J., Barrios, A. C., Henry, T. B., Johnson, M. E., Koelmans, A. A., Montoro Bustos, A. R., Matheson, J., Roesslein, M., Zhao, J., & Xing, B. (2022). Potential Artifacts and Control Experiments in Toxicity Tests of Nanoplastic and Microplastic Particles. Environmental Science & Technology, 56(22), 15192–15206. https://doi.org/10.1021/acs.est.2c04929
Zangmeister, C. D., Radney, J. G., Benkstein, K. D., & Kalanyan, B. (2022). Common Single-Use Consumer Plastic Products Release Trillions of Sub-100 nm Nanoparticles per Liter into Water during Normal Use. Environmental Science & Technology, 56(9), 5448–5455. https://doi.org/10.1021/acs.est.1c06768