Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Products and Resources

Data and Decision Tools

Standards

Tools

  • Circular Economy Resource Registry – A central platform with categories of circular economy resources including publications, tools, organizations, and data sources. Launching early 2023. 

Publications

  • Beers, K., Schumacher, K., Migler, K., Morris, K., & Kneifel, J. (2022). An Assessment of Mass Balance Accounting Methods for Polymers Workshop Report. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1500-206 

  • Escoto, X., Gebrehewot, D., & Morris, K. C. (2022). Refocusing the barriers to sustainability for small and medium-sized manufacturers. Journal of Cleaner Production, 338, 130589. https://doi.org/10.1016/j.jclepro.2022.130589 

  • Raman, A. S., Morris, K. C., & Haapala, K. R. (2023). Reusing and Extending Standards-Based Unit Manufacturing Process Models for Characterizing Sustainability Performance. Journal of Computing and Information Science in Engineering, 23(2), 021005. https://doi.org/10.1115/1.4054487 

  • Reslan, M., Last, N., Mathur, N., Morris, K. C., & Ferrero, V. (2022). Circular Economy: A Product Life Cycle Perspective on Engineering and Manufacturing Practices. Procedia CIRP, 105, 851–858. https://doi.org/10.1016/j.procir.2022.02.141


Material Science

Standards

Tools

  • Mass Spectrometry Data Center - This resource provides mass spectral libraries and software tools for identifying small molecule compounds. It is relevant to plastics formulation and additive research. 

  • Hybridized Plastics Measurement Platforms - For use in post-consumer plastics.  

Publications

  • Burkey, A. A., Fischbach, D. M., Wentz, C. M., Beers, K. L., & Sita, L. R. (2022). Highly Versatile Strategy for the Production of Telechelic Polyolefins. ACS Macro Letters, 11(3), 402–409. https://doi.org/10.1021/acsmacrolett.2c00108 

  • Ivancic, R. J. S., Orski, S. V., & Audus, D. J. (2022). Structure–Dilute Solution Property Relationships of Comblike Macromolecules in a Good Solvent. Macromolecules, 55(3), 766–775. https://doi.org/10.1021/acs.macromol.1c02271 

  • Kotula, A. (2020). A frequency-dependent effective medium model for the rheology of crystallizing polymers. Journal of Rheology, 64(3), 505–515. https://doi.org/10.1122/1.5132407 

  • Kotula, A. P., Orski, S. V., Brignac, K. C., Lynch, J. M., & Heilala, B. M. J. (2022). Time-gated Raman spectroscopy of recovered plastics. Marine Pollution Bulletin, 181, 113894. https://doi.org/10.1016/j.marpolbul.2022.113894 

  • Kotula, A. P., & Migler, K. B. (2018). Evaluating models for polycaprolactone crystallization via simultaneous rheology and Raman spectroscopy. Journal of Rheology, 62(1), 343–356. https://doi.org/10.1122/1.5008381 

  • Kotula, A. P., Snyder, C. R., & Migler, K. B. (2017). Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer, 117, 1–10. https://doi.org/10.1016/j.polymer.2017.04.006 

  • McIlroy, C., Seppala, J. E., & Kotula, A. P. (2019a). Combining Modeling and Measurements To Predict Crystal Morphology in Material Extrusion. In J. E. Seppala, A. P. Kotula, & C. R. Snyder (Eds.), ACS Symposium Series (Vol. 1315, pp. 85–113). American Chemical Society. https://doi.org/10.1021/bk-2019-1315.ch006 

  • McIlroy, C., Seppala, J. E., & Kotula, A. P. (2019b). Combining Modeling and Measurements To Predict Crystal Morphology in Material Extrusion. In J. E. Seppala, A. P. Kotula, & C. R. Snyder (Eds.), ACS Symposium Series (Vol. 1315, pp. 85–113). American Chemical Society. https://doi.org/10.1021/bk-2019-1315.ch006 

  • Northcutt, L. A., Orski, S. V., Migler, K. B., & Kotula, A. P. (2018a). Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer, 154, 182–187. https://doi.org/10.1016/j.polymer.2018.09.018 

  • Northcutt, L. A., Orski, S. V., Migler, K. B., & Kotula, A. P. (2018b). Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer, 154, 182–187. https://doi.org/10.1016/j.polymer.2018.09.018 

  • Roy, D., Kotula, A. P., Natarajan, B., Gilman, J. W., Fox, D. M., & Migler, K. B. (2018). Effect of cellulose nanocrystals on crystallization kinetics of polycaprolactone as probed by Rheo-Raman. Polymer, 153, 70–77. https://doi.org/10.1016/j.polymer.2018.08.007 

  • Schumacher, K. (2022). Facilitating a Circular Economy for Textiles Workshop Report (NIST SP 1500-207; p. NIST SP 1500-207). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1500-207 

  • Schumacher, K., & Green, M. L. (2021). Circular Economy in the High-Tech World Workshop Report. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1500-204 


Environmental Impact Assessment 

Standards

Tools

  • Mass Spectrometry Data Center - This resource provides mass spectral libraries and software tools for identifying small molecule compounds. It is relevant to plastics formulation and additive research. 

  • Partner Product: Polymer Kit 1.0: Analytical Standards for Plastics Analysis - A kit containing reference polymers commonly found in the environment designed to help labs study plastic pollution. A product of the Hawai'i Pacific University Center for Marine Debris Research

Publications

  • Petersen, Elijah. J., Barrios, A.C., Bjorkland, R., Goodwin, D.G., Li, J., Waissi, G., Henry, T. (2022). Evaluation of bioaccumulation of nanoplastics, carbon nanotubes, fullerenes, and graphene family materials. Environment International, 21 November 2022, 107650. https://doi.org/10.1016/j.envint.2022.107650 

  • Petersen, E. J., Kennedy, A. J., Hüffer, T., & von der Kammer, F. (2022). Solving Familiar Problems: Leveraging Environmental Testing Methods for Nanomaterials to Evaluate Microplastics and Nanoplastics. Nanomaterials, 12(8), 1332. https://doi.org/10.3390/nano12081332 

  • Petersen, Elijah. J., Barrios, A. C., Henry, T. B., Johnson, M. E., Koelmans, A. A., Montoro Bustos, A. R., Matheson, J., Roesslein, M., Zhao, J., & Xing, B. (2022). Potential Artifacts and Control Experiments in Toxicity Tests of Nanoplastic and Microplastic Particles. Environmental Science & Technology, 56(22), 15192–15206. https://doi.org/10.1021/acs.est.2c04929 

  • Zangmeister, C. D., Radney, J. G., Benkstein, K. D., & Kalanyan, B. (2022). Common Single-Use Consumer Plastic Products Release Trillions of Sub-100 nm Nanoparticles per Liter into Water during Normal Use. Environmental Science & Technology, 56(9), 5448–5455. https://doi.org/10.1021/acs.est.1c06768

Created December 6, 2022, Updated January 4, 2023