Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 51 - 75 of 96

Measurements for Hydrogen Storage Materials

Completed
The evaluation of candidate storage materials is complicated by a lack of readily available methods for the direct measurement of hydrogen content. MML is working together with researchers from NCNR, and PML to provide measurement tools to fill this gap. Prompt Gamma Activation Analysis (PGAA) is a

Measuring Intermolecular Interactions with Electro-Acoustic Spectroscopy

Ongoing
We have a number of opportunities to collaborate with us. See below for details. What does this project aim to do for the chemical industry? Many industrial processes depend on the intermolecular environment- the solvents and ions that surround a molecule. These interactions impact separations

Membranes for Clean Water

Completed
Impact Access to affordable, clean water is vital to the nation's economic growth and security. Polymer-based membrane separation technologies based on reverse osmosis, forward osmosis and nanofiltration will play an increasingly critical role in the production of clean, safe water. In order to

Metrics for Reactive Wetting in Complex Systems

Completed
From fundamental physical considerations, we have derived a set of partial differential equations describing wetting and spreading. These equations are derived using a variational thermodynamic principle applied to a two-component alloy system with three (vapor, liquid and solid) phases. The method

Metrology of Magnetic Materials

Ongoing
Currently, the bulk of this project is focused on three main pieces: Thermal MagIC: An SI-Traceable Method for 3D Thermal Magnetic Imaging and Control Magnetic Refrigeration Magnetic Standard Reference Materials (SRMs) Thermal MagIC (MAGnetic Imaging and Control) is focused on developing new

Metrology for Nanoimprint Lithography

Completed
Nanoimprint Lithography (NIL) was originally perceived as a versatile, low-cost, and high-resolution patterning alternative for optical lithography in CMOS fabrication. However, it is becoming apparent that NIL has great potential for nanotechnology in general. It is capable of patterning sub-10 nm

Metrology for Nanolithography

Ongoing
Small Angle Scattering techniques are employed to measure, with sub-nm precision, pattern shape, dimensions, and orientation for structures created in periodic arrays. Critical-Dimension Small Angle X-ray Scattering (CD-SAXS) utilizes the variable-angle transmission scattering from a small beam size

Micro-rheometry

Completed
One way to develop small-volume rheology methods that we have used successfully is to start with existing concepts and geometries of rheometry and to then "think small." This approach ensures that we are measuring fundamental materials properties rather than quantities that are experiment and

Microscopy Methods

Completed
Due to projection effects, analytical transmission electron microscopy (AEM) of thinned or sectioned samples has traditionally been limited to essentially two-dimensional imaging and analysis. Current nanometer scale devices are too small and complex for current sectioning capabilities and two

Microstructure-Property Tools for Structure-Property Design

Ongoing
Microstructure-level Structure-Property Tools OOF: Finite Element Analysis of Microstructures enables materials scientists calculate macroscopic properties from images of real or simulated microstructures. It reads an image, assigns material properties to features in the image, and conducts virtual

Modeling Dispersion Rheology for Non-Spherical Particles

Completed
The goal of this MGI project is to establish an interactive database, generated by sophisticated modeling, such as dissipative particle dynamics and smooth particle hydrodynamics, to compute the rheological properties of polymer composites, where interaction among inclusions, inclusion particle

Multiscale MD-FEM Methodology

Completed
MSED, as a part of the MGI effort within NIST, is developing a multiscale modeling schema, statically coupling finite element modeling (FEM) to atomistic Molecular Dynamics (MD) 1. This methodology allows a far more realistic representation of physical phenomena than that obtained by applying each

Multiscale Modeling and Validation of Semiconductor Materials and Devices

Ongoing
The limitations of scaling traditional CMOS (complementary metal-oxide semiconductors) designs have necessitated that the semiconductor industry consider new materials and design concepts. For wide bandgap semiconductor devices, optimization of materials and fabrication processes is needed to

Nanoparticle Assembly in Complex Fluids

Completed
Engineered nanomaterials are promising for technological and medical purposes. However, molecular mechanisms of toxicology are less known. This presents a problem and barrier for future innovation and applications as new nanomaterials are developed for healthcare where particles are intentionally

Nanoscale Thermal Properties

Completed
It is known that at the nanoscale, composition and interface structure play important roles in determining the mechanical, thermal, and electrical properties of multiphase nanomaterials and nanocomposites. To probe the thermal properties of these heterogeneous nanomaterials, local thermal analysis

Nanotube Metrology

Completed
Single-wall carbon nanotubes (SWCNTs) are a tubular form of carbon consisting of a single shell of sp2 bonded carbon with a nanometer scale diameter that have many predicted properties superior to other available materials. However, every production technique for SWCNTs produces many different

NIST Combinatorial Methods Center (NCMC)

Completed
Established in 2002, the NCMC combines pioneering research and customer engagement to foster wide-spread adaptation of combinatorial and high-throughput methodologies. NCMC research addresses key challenges faced by polymer researchers who want to employ combi. In particular, the NCMC creates new

Particles, Tubes, and Colloids

Ongoing
Description A highlight of the PTC project is our success in purification of well-defined SWCNT populations using liquid phase separation methods. Although we use multiple techniques and methods, ion exchange chromatography, rate-zonal and isopycnic ultracentrifugation, size exclusion chromatography

Personal Body Armor

Completed
To quantify the impact of mechanical degradation on ballistic fibers, NIST developed a novel device for controlled folding of yarns and woven fabrics. In addition, we developed test protocols that employ single fibers to assess the effect of folding using a recently developed modified single fiber

Physical Infrastructure: Connections

Completed
The NIST Physical Infrastructure Program will provide the critical measurement science needed to assess the condition of aging physical infrastructure and guide cost-effective strategies for its maintenance, repair, and replacement. Infrastructure management challenges in the U.S. have received

Polymer Additive Manufacturing and Rheology

Ongoing
We are measuring the fundamental processes and material parameters that are critical to understanding and furthering polymers-based AM. These efforts will aid the AM ecosystem through better online monitoring capabilities and developing strategies for materials optimization. In situ measurements of

Polymer Analytics

Ongoing
This project focuses on a variety of activities to achieve the aforementioned goal of accelerating the discovery of new polymer physics. Polymer databases In collaboration with partners, we build FAIR (findable, accessible, interoperable, reproducible) data resources that enable machine learning

Polymer Composites

Ongoing
Measurements of interphase properties are extremely challenging, and their effects on macroscopic properties and performance of composites are poorly quantified. The objectives of this project fall into the following four research thrusts: Fluorescence Based Probes to Sense Damage and Water in

Polymer Formulations

Completed
Bringing new and optimized formulated products to market requires measurements that will allow rapid assessment of the structure and properties of multicomponent mixtures over large parameter spaces. To this end, we are developing microfluidic "lab on a chip" technologies that enable researchers to

Polymer Mechanics

Ongoing
The mechanical behavior for polymers is very sensitive to the deformation rate of the impact test. Thus we are developing and applying several novel measurements that can study the mechanical response of the polymer at different deformation rates and at different material length scales. High-rate