Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 1 - 25 of 61

Advancing PEEM-based Metrology

Ongoing
With the rise of emergent material systems, nanoscale devices and components, there is a need to assess their electronic properties at similar length scales. Bulk-sensitive measurements provide characteristic information averaged over the sample or device, and these properties may not be uniform

Advancing Power Electronics with Defect Metrology

Ongoing
Power electronics play a central role in all aspects of electrical energy storage, distribution, conversion, and consumption. Currently, power electronics heavily rely on Si-based insulated-gate bipolar transistors (IGBT), which have large footprints, are inefficient, and require extensive cooling

Atom Manipulation with the Scanning Tunneling Microscope

Ongoing
Manipulation of single atoms with the scanning tunneling microscope is made possible through the controlled and tunable interaction between the atoms at the end of the STM probe tip and the single atom (adatom) on a surface that is being manipulated. In the STM tunneling junction used for atom

Atom-based Silicon Quantum Electronics

Ongoing
This project is developing atomically precise, atom-based electronic devices for use in quantum information processing and analog quantum simulation. We are developing the fabrication, measurement, and modeling methods needed to realize single atom, spin-based qubits in silicon as an integrated

Chemical Functionalization and Manipulation of Nano Materials

Ongoing
This project focuses on manipulating nanomaterials, including weakly bonded van der Waals systems, and probing emergent phenomena in these nanoengineered systems to impact technologies such as nanoelectronics, optoelectronics, quantum sensing, and quantum computing. Developing processes to

Designing Advanced Scanning Probe Microscopy Instruments

Ongoing
SPM is a general acronym for various probe instruments. The "P" in SPM stands for various types of probe measurements, such as capacitance (C), force (F), tunneling (T), etc. The scanning tunneling microscope (STM), including custom designs at the CNST, uses the quantum mechanical principle of

Designing the Nanoworld: Nanostructure, Nanodevices, and Nano-optics

Ongoing
Developing and exploiting nanodevices for quantum and nanotechnologies requires nanoscale and atomic scale modeling of ultrasmall structures, devices, their operation, and their response to probes. Key challenges of understanding physics at the quantum/classical interface and measurement at the

Diamond NV Center Magnetometry

Ongoing
A flaw in a crystal might not be an intuitive choice for a measurement tool, but the nitrogen-vacancy (NV-) defect in diamond is something special. Using light, we prepare the NV- center’s the quantum spin state, it interacts with magnetic fields, and we read out the resulting spin state through

DUV/EUV Nanoscopy for Imaging Nanostructures

Ongoing
Novel optical nanoscopy techniques using deep-ultraviolet (DUV) and extreme-ultraviolet (EUV) laser sources are developed to characterize nanostructures with high dimensional sensitivity and low uncertainty for advancing the semiconductor devices manufacturing process. The illumination beam is

Electrical Characterization of Nanoscale Electron Devices

Ongoing
Over the decades, many measurement methods were developed to meet the needs of advancing electron device/circuit/system technology. As technology continue to advance, new needs continue to surface, either due to old measurements are no longer adequate or due to no established method exists. A case

Electrical Scanning Probe Microscopy

Ongoing
Electrical scanning probe microscopes (eSPMs) are a subset of scanning probe microscopes which measure some electrical parameter as well as surface topography. These include techniques such as scanning capacitance microscopy (SCM), scanning spreading resistance microscopy (SSRM), conductive atomic

Electron Microscopy of Carbon Nanotube Composites

Ongoing
Multi-wall CNTs (MWCNTs) are a common nano-carbon reinforcement material and are frequently dispersed into a polymer matrix to form composites that can be engineered with specific combinations of desirable properties – electrical, thermal, optical and mechanical, etc. However, this

Engineering and Optical Characterization of Magnetic Nanoparticles (MNPs)

Ongoing
Nanomagnets by Design Nanoparticles are an important subclass of low-dimensional magnetic materials displaying size-dependent magnetic behavior. The controllable magnetocrystalline anisotropy introduced at nanoscale size regimes (as low as 3 nms in diameter) allows for MNPs of ferro/ferrimagnetic

Enriched Silicon and Devices for Quantum Information

Ongoing
Enriching silicon from 5% to <1 ppm 29Si Groundbreaking work around the world has realized qubits in silicon using metal-oxide-semiconductor (MOS) devices, single atomic dopants/defects and SiGe heterostructures, and, in all cases, the qubit coherence and fidelity properties are improved when using

EUV Scatterometry

Ongoing
To measure and inspect the smallest printed features on an IC chip, researchers and manufacturers use a combination of electron scanning modalities (i.e., transmission electron and scanning electron microscopies) and an optical method, scatterometry. Industrially, the most common modality for

Exciton and Charge Transport Dynamics in Organic Semiconductors

Ongoing
Our approach toward establishing connections between the application space and physical phenomena includes developing electrical/optical devices and measurements that can be used for physical measurement, physical measurements that can be applied to real devices, and device design that can be tuned

Far-infrared Spectroscopy of Biomolecules (Archived)

Completed
We employ novel complimentary measurement and theoretical techniques to explore the low frequency intramolecular dynamics of model biological molecules including amino acids, short peptides with constrained structures, proteins with well-defined tertiary structures and DNAs. Our current efforts

Femtosecond Nonlinear Optical Spectroscopy of Nanoscale Materials

Ongoing
The purpose of this project is to develop and refine spectroscopic techniques based on nonlinear optics for the study of novel materials. Measurements that isolate the nonlinear response are often better able to uncover physical processes that, in the linear response, are subtle and hard to isolate

Hydrogen Generation in Di-Iron Hydrogenase Mimics (Archived)

Completed
Time-resolved infrared (TRIR) measurements on the picosecond to microsecond timescales and FTIR transmission spectroscopy in the far-infrared (THz) spectral region are applied as a means to monitor light-initiated vibrational mode dynamics in model hydrogenase species. Synthesis of the model species

Integrated CMOS Testbeds for Nanoelectronics and Machine Learning

Ongoing
The increasingly complex device requirements for next-generation computing architectures such as neuromorphic computing or nanoelectronic machine learning accelerators present challenges for researchers across the spectrum of institutions, from small businesses and universities to government