Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 26 - 50 of 61

Magnetic Resonance Spectroscopy

Ongoing
Electronics are all around us and have completely reinvented nearly every aspect of our society. Virtually any system, large or small, contains some type of electronics that may or may not be directly visible to the user. Our insatiable appetite for faster and better technology has been fueled by

Manipulation and Imaging of Dilute Densities of Electron Spins

Ongoing
While the characteristics of the unpaired electrons which are trapped in these bonding errors have a dramatic impact on the macroscale material properties, observing these same unpaired electrons has proven quite difficult. These unpaired electrons are transient in time, temperature, and pressure

Mapping of Thermal Properties at the Nanoscale

Ongoing
Continuous advances in the performance and functionality of semiconductor devices have been driven by scale reduction, incorporation of new and nanomaterials, and by heterogeneous integration (HI). However, such scaling and integrated architecture has rendered existing thermal metrology inadequate

Measuring Topological Insulator Surface State Properties

Ongoing
A family of TI materials can by synthesized by combining binary compounds of Bismuth (Bi) or Antimony (Sb) with Selenium (Se) and Tellurium (Te) to form Bi 2Se 3, Bi 2Te 3, and Sb 2Te 3 compounds. In these material compounds the spin of the electron has a strong interaction with the motion of the

Metrology for Emerging Integrated Systems

Ongoing
The Emerging Integrated Systems Metrology program supports measurements for advanced manufacturing and secure nano-manufacturing, novel devices and electronic materials. Specifically, the program aims to develop the metrology required to enable a quantitative assessment and physical understanding of

Metrology for Printing and Graphic Arts Substrates

Ongoing
Paper is a complex, heterogeneous, multi-phased material. While there is a significant body of work related to the dielectric properties of cellulose, comparatively fewer studies have been done on printing and writing grades of paper. In our previous work, we have been able to differentiate between

Nanomagnet Dynamics

Ongoing
The motion of the magnetization in magnetic nanostructures is at the core of important technologies such as computer hard drives and magnetic memory chips. Additionally, emerging technologies such as magnetic logic and second-generation spin-torque memory chips write and read "bits" of information

The Nanotechnology Xccelerator

Ongoing
The Nanotechnology Xccelerator was announced on September 13, 2022 and was officially accepted for production at Skywater Technology Foundry using the Sky130 technology in Q1 2024. Sky130, which comes in both a conventional and open-source process design kit, is a 5-metal layer process. To

Neuromorphic Device Measurements

Ongoing
One type of device that is emerging as an attractive artificial synapse is the resistive switch, or memristor. These devices, which usually consist of a thin layer of oxide between two electrodes, have conductivity that depends on their history of applied voltage, and thus have highly nonlinear

Novel Sources for Focused-ion Beams

Completed
Commercial focused ion beams (FIBs) are used in a wide variety of applications. For example, they serve as diagnostic tools, slicing through a nanodevice to expose its internal structure. They can also shape nanoscale materials either by adding atoms to a structure or by shaving them off. And they

Operando Measurements of Electrochemical (Charge-transfer) Processes

Ongoing
There are two ways to study a very fast process such as charge transfer. One can use very high-speed measurement that can follow the effect of the process, or one use a method that is sensitive only to the process itself. Either way has its weakness. Many fast measurements can follow the process

Optical Methods for 3-D Nanostructure Metrology (Archived)

Completed
This project develops new approaches to optical microscopy based on a high magnification optical platform that samples the full 3-D scattered field. Both the semiconductor industry and the evolving nanomanufacturing sector are facing enormous challenges measuring nanometer scale features over large

Optical and Optoelectronic Materials Characterization

Ongoing
Today's electronics have reached a point where sheer computation power has combined form and function as the key driver of large consumer markets. The demand for portable and pervasive electronics with greater functionality promises significant changes over the next decades in how society interacts

Photonic Quantum State Imaging Metrology

Ongoing
Fundamental understanding of quantum behavior of single molecules, which is a favorable candidate for quantum information processing technologies, has advanced gradually, relying on empirical studies mostly. This requires a measurement platform to study fundamental quantum characteristics in single

Precision Materials for Quantum Devices

Ongoing
MBE System Our fabrication system is composed of ultra-high vacuum (UHV) chambers that support the in-vacuum exchange of 75 mm wafers without exposure to air as seen in Figure 1. These chambers are: (1) a deposition chamber with electron gun deposition, UHV compatible sputter guns, in situ shadow

Probing Graphene Electronic Devices with Atomic Scale Measurements

Ongoing
Two of the remarkable features of graphene that are opening avenues to multiple applications are its high transport carrier mobility and the broad tunability of its electronic properties. Graphene charge carriers can be tuned continuously from negative carriers (i.e., electrons), to positive (holes)

Quantitative Nanoscale Imaging Through Artificial Intelligence

Ongoing
This project extends optical capabilities for the characterization of nanoscale devices as they increase in complexity, with challenging new materials properties, thicknesses, and length scales that challenge simplistic applications of the fundamental equations of electromagnetism. Critical

Quantum Transport Measurements

Ongoing
It is necessary to isolate, control, and understand the fundamental physics of exotic states of matter to create nanoengineered systems with the requisite quantum properties for quantum information systems and advanced computing applications. We develop measurement capabilities and design test

Sequential Bayesian Experiment Design

Ongoing
We develop and publish the optbayesexpt python package. The package implements sequential Bayesian experiment design to control laboratory experiments for efficient measurements. The package is designed for measurements with: an experiment (possibly computational) that yields measurements and

Si-Based Single Spin/Single Photon Measurement, Coherence and Manipulation

Ongoing
Devices based on moving and controlling single electrons offer the tantalizing possibility of achieving quantum information processing by virtue of their spin or charge coherent properties. We are pursuing CMOS-compatible Si-based quantum dots for a variety of goals, including:” Narrowband high-MHz

Silicon-based single electron current standards

Ongoing
Our devices can manipulate and trap a single electron in a quantum dot through the application of voltages to electrostatically controlled tunnel barriers. By cycling these voltages appropriately, we are able to sequentially pump one electron at a time through the device. To produce a current