Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 51 - 63 of 63

Sequential Bayesian Experiment Design

Completed
We develop and publish the optbayesexpt python package. The package implements sequential Bayesian experiment design to control laboratory experiments for efficient measurements. The package is designed for measurements with: an experiment (possibly computational) that yields measurements and

Si-Based Single Spin/Single Photon Measurement, Coherence and Manipulation

Ongoing
Devices based on moving and controlling single electrons offer the tantalizing possibility of achieving quantum information processing by virtue of their spin or charge coherent properties. We are pursuing CMOS-compatible Si-based quantum dots for a variety of goals, including:” Narrowband high-MHz

Silicon-based single electron current standards

Ongoing
Our devices can manipulate and trap a single electron in a quantum dot through the application of voltages to electrostatically controlled tunnel barriers. By cycling these voltages appropriately, we are able to sequentially pump one electron at a time through the device. To produce a current

Spin-orbit interaction in devices and quantum materials

Ongoing
The spin degree of freedom can provide a basis for next-generation electronic devices. Spintronic devices typically include materials with magnetic ordering, such as ferromagnets or antiferromagnets. The state of the magnetization influences charge and spin current through an effect known as

Spintronics for Neuromorphic Computing

Ongoing
Magnetic tunnel junctions (see Fig. 1) consist of two thin films of ferromagnetic material separated by a few atomic layers of an insulating material. The insulator is so thin that electrons can tunnel quantum mechanically through it. The rate at which the electrons tunnel is affected by the

Structure, Defects, and Scattering in Graphene

Completed
The graphene honeycomb lattice is a key element in determining many of graphene's spectacular properties, which are desirable for a host of electronic applications. The graphene 6-fold symmetric lattice gives rise to charge carriers behaving like light-waves having zero mass. The charge carriers in

Temporal Computing

Ongoing
In standard integrated circuits, information that is coded as ones and zeros is implemented by voltages on wires being high or low. The circuits consume energy during transitions between these voltages. Binary numbers have a voltage per bit so there are a lot of transitions each time a number

Theory and Modeling of Materials for Renewable Energy

Completed
Nanostructured materials offer potential benefits for a range of renewable energy applications that rely critically on interfaces for separating charges, including photovoltaics, thermoelectrics, and electrochemical energy storage. The use of nanostructures allows scientists and engineers to

Theory of Spin-Orbit Torque

Completed
A ferromagnetic material such as iron acquires its magnetization because the magnetic orientation of its constituent atoms all line up in the same way. Because individual electrons also have an intrinsic magnetic moment – which is often referred to as the electron “spin” - they can interact with

Thin Film Electronics (Archived)

Completed
Today's electronics have reached a point where sheer computation power has yielded to combined form and function as the key driver of large consumer markets. The demand for portable and pervasive electronics with greater functionality promises significant changes over the next decades in how society

Ultrafast Spectroscopy to Advance Microelectronics

Ongoing
Continued advancement in microelectronics, including analog and digital electronics, power electronics, optics and photonics, and micromechanics for memory, processing, sensing, and communications as defined by the OSTP “National Strategy on Microelectronics Research,” requires knowledge of material