Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 1 - 25 of 39

Biofabrication of Tissue Engineered Constructs

Ongoing
OCT imaging was assessed using a model scaffold-cell system consisting of a polysaccharide-based hydrogel seeded with human Jurkat cells. Four test systems were used: hydrogel seeded with live cells, hydrogel seeded with heat-shocked or fixed dead cells and hydrogel without any cells. Time series

Biomaterials for Oral Health

Completed
NIST along with its partners has a long commitment to scientific excellence with demonstrated impact in improving the oral health of the public. NIST researchers are leaders in this field and create a community by engaging other researchers, industry, and regulatory agencies to address urgent needs

Broadband Coherent Anti-Stokes Raman Scattering (BCARS) Microscopy

Ongoing
Impact There is a need for label-free chemical microscopy in medicine, biology and materials science. Most of the current methods use chemical labels that often disturb the distribution and nature of chemical components being investigated. The method we are developing enables noninvasive and rapid

Combinatorial Approaches to Thin Film Nanomaterials

Completed
The behavior and performance of nanostructured materials and devices are governed by the chemistry and structure of their surfaces and interfaces. However, chemistry-structure-performance relationships in these systems are complex, so hundreds of experiments can be necessary to determine optimal

Dimensional Metrology for Nanoscale Patterns

Completed
Dimensional metrology and control is a critical component of semiconductor fabrication. State-of-the-art integrated circuits are comprised of nearly a billion nanoscale transistors linked together by an equally as impressive nanoscale network of conductors, insulators, and capacitors. To ensure that

Energy Storage & Delivery

Completed
Our program will address key measurement issues related to structure and dynamics of important classes of PEM materials, including emerging systems like block copolymers, polymer blends, and candidate materials proposed by industry leaders like GM. We are developing advanced methods that illuminate

Engineered Materials for Resilient Infrastructure Program

Ongoing
Objective - To develop and deploy measurement science to reliably assess the current and future performance of engineered materials in support of resilient infrastructure given exposure to chronic (e.g., materials degradation) and episodic (e.g., earthquakes) hazards. What is the technical idea? To

Hierarchical Materials

Ongoing
The STG develops the methods and metrology that will lead to the understanding of the structure-property relationships of hierarchical composites in real medical PPE or protective applications, which heretofore has been lacking. This work establishes in situ monitoring of advanced manufacturing

Macromolecular Architectures

Ongoing
This project’s purpose is to synthesize and characterize model thermoplastics, thermoplastic elastomers (TPE), and mixed resins with systematic variation of polymer sequence, chemistry, and architectures to generate libraries of quantitative structure-property relationships validated by multiple

Macromolecule and Nanoparticle Composition and Architecture

Completed
Bringing new products to market requires measurements for rapid, quantitative assessment of composition and structure. To this end, NIST has developed a series of mass spectrometry-based tools that decrease the time necessary to achieve measurement success while producing more accurate results. The

Measurements of Point-Defect Chemistry in Complex Oxides

Ongoing
Project Goal: To develop magnetic resonance, x-ray absorption, electron diffraction, and electrical conductivity measurements to better characterize dilute concentrations of point defects in oxide materials and effectively correlate electro-mechanical properties to measured defect chemistry. Oxide

Membranes for Clean Water

Completed
Impact Access to affordable, clean water is vital to the nation's economic growth and security. Polymer-based membrane separation technologies based on reverse osmosis, forward osmosis and nanofiltration will play an increasingly critical role in the production of clean, safe water. In order to

Metrologies for Non-linear Materials in Impact Mitigation

Ongoing
Overview This project develops fundamental structure-property measurements on model materials and novel material chemistries from quasi-static to dynamic rates. The goal is to foster a materials by design approach for novel energy dissipation and force re-direction mechanisms. Processing-Structure

Metrology for Nanoimprint Lithography

Completed
Nanoimprint Lithography (NIL) was originally perceived as a versatile, low-cost, and high-resolution patterning alternative for optical lithography in CMOS fabrication. However, it is becoming apparent that NIL has great potential for nanotechnology in general. It is capable of patterning sub-10 nm

Metrology for Nanolithography

Ongoing
Small Angle Scattering techniques are employed to measure, with sub-nm precision, pattern shape, dimensions, and orientation for structures created in periodic arrays. Critical-Dimension Small Angle X-ray Scattering (CD-SAXS) utilizes the variable-angle transmission scattering from a small beam size

Micro-rheometry

Completed
One way to develop small-volume rheology methods that we have used successfully is to start with existing concepts and geometries of rheometry and to then "think small." This approach ensures that we are measuring fundamental materials properties rather than quantities that are experiment and

Multifunctional 3D Printable Polymer-Metal Composites

Ongoing
Recent advances in additive manufacturing (AM) have positioned metals and polymers as two key materials. Typically, AM of these two materials involves incompatible methods and conditions. The novel multifunctional polymer-metal composites in this project incorporate low-melting alloys with

Multiscale structure and dynamics in advanced technological materials

Ongoing
New technologies increasingly harness materials phenomena that operate across many length-scales: e.g., in selective gas adsorption, additive manufacturing, new alloy designs, or advanced concretes. To overcome technology barriers, it is no longer sufficient just to characterize the materials

Nanoscale Thermal Properties

Completed
It is known that at the nanoscale, composition and interface structure play important roles in determining the mechanical, thermal, and electrical properties of multiphase nanomaterials and nanocomposites. To probe the thermal properties of these heterogeneous nanomaterials, local thermal analysis

NIST Combinatorial Methods Center (NCMC)

Completed
Established in 2002, the NCMC combines pioneering research and customer engagement to foster wide-spread adaptation of combinatorial and high-throughput methodologies. NCMC research addresses key challenges faced by polymer researchers who want to employ combi. In particular, the NCMC creates new

Particles, Tubes, and Colloids

Ongoing
Description A highlight of the PTC project is our success in purification of well-defined SWCNT populations using liquid phase separation methods. Although we use multiple techniques and methods, ion exchange chromatography, rate-zonal and isopycnic ultracentrifugation, size exclusion chromatography

Personal Body Armor

Completed
To quantify the impact of mechanical degradation on ballistic fibers, NIST developed a novel device for controlled folding of yarns and woven fabrics. In addition, we developed test protocols that employ single fibers to assess the effect of folding using a recently developed modified single fiber

Photonic Dosimetry

Ongoing
With this effort, NIST is responding to industry needs for traceable, measurement solutions that can resolve spatial variations of absorbed dose at the level of individual components on a silicon wafer or bacteria on surgical instruments. Presently, there is only limited traceability to national

Polymer Additive Manufacturing and Rheology

Ongoing
We are measuring the fundamental processes and material parameters that are critical to understanding and furthering polymers-based AM. These efforts will aid the AM ecosystem through better online monitoring capabilities and developing strategies for materials optimization. In situ measurements of