Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 26 - 50 of 55

Metrology for Nanomaterials in Medicine

Ongoing
Drug products that incorporate nanomaterials are defined by FDA as non-biological complex drugs (NBCDs). NBCDs are a class of medical products that cannot be defined nor fully identified as traditional small-molecule drugs. NBCDs consist of different components that form a complex hybrid structure

Microplastic and Nanoplastic Metrology

Ongoing
The Micro and Nanoplastic (MNP) Metrology Project aims to develop a toolbox of methods for size-based separations from complex matrices, chemical characterization protocols, and test materials necessary to enable quantification of micro- and nano-sized plastic particles, a need articulated by our

Microscopy Methods

Completed
Due to projection effects, analytical transmission electron microscopy (AEM) of thinned or sectioned samples has traditionally been limited to essentially two-dimensional imaging and analysis. Current nanometer scale devices are too small and complex for current sectioning capabilities and two

Modeling and Simulation of Nanofabrication (Archived)

Completed
While self-assembly is still in its relative infancy with respect to practical use, with much additional research required to reach maturity, the more widely utilized top-down methods will continue to require advances and modifications to improve current nanomanufacturing techniques. This modeling

Nanoelectromagnetics

Ongoing
The primary goal of this program is metrology that enables advanced nanoscale device (including electronics, spintronics, and life science) development. Based on current trends in electronics, we are focusing on metrology for two classes of devices: (1) nanoscale devices utilizing and exploring new

Nanoparticle Metrology in Complex Cellular Environments

Completed
Nanoparticle interactions with individual cells. Existing techniques to evaluate nanoparticle incorporation include ICP-AES or ICP-MS, which atomize entire samples (thousands of cells) and detect nanoparticles by quantifying the elemental composition. Bulk techniques provide general trends averaged

Nanoplasmonics and Three-Dimensional Plasmonic Metamaterials

Ongoing
Plasmonic materials are composed of metals and insulators that are ordered in geometric arrangements with dimensions that are fractions of the wavelength of light. Research groups are experimenting with a variety of geometric approaches, but all aim to exploit surface plasmons, which are light

Nanoscale Property Measurements by Atomic Force Microscopy

Ongoing
Over the past several decades, Atomic Force Microscopy (AFM) has advanced from a technique used primarily for surface topography imaging to one capable of characterizing a range of chemical, mechanical, electrical, and magnetic material properties with nanometer resolution. Such characterizations

Nanotribology for Nanomanufacturing (Archived)

Completed
Friction and wear are major causes of mechanical failures and dissipative energy losses. These shortfalls account for a significant portion of the annual gross domestic product in the United States, amounting to approximately $800 billion in 2010. It is estimated that tens of billions of U.S

Neuromorphic Device Measurements

Ongoing
One type of device that is emerging as an attractive artificial synapse is the resistive switch, or memristor. These devices, which usually consist of a thin layer of oxide between two electrodes, have conductivity that depends on their history of applied voltage, and thus have highly nonlinear

Novel Sources for Focused-ion Beams

Completed
Commercial focused ion beams (FIBs) are used in a wide variety of applications. For example, they serve as diagnostic tools, slicing through a nanodevice to expose its internal structure. They can also shape nanoscale materials either by adding atoms to a structure or by shaving them off. And they

Optical Methods for 3-D Nanostructure Metrology (Archived)

Completed
This project develops new approaches to optical microscopy based on a high magnification optical platform that samples the full 3-D scattered field. Both the semiconductor industry and the evolving nanomanufacturing sector are facing enormous challenges measuring nanometer scale features over large

Optical and Microwave Spectroscopy of Microelectronic Systems

Ongoing
Collaborations with industry leaders have led to new understanding of magnetic damping in advanced materials and replication of our magnetic metrology tools. We investigate fundamental aspects of spin transfer in materials and structures that offer improved performance in future devices such as

Photonic Dosimetry

Ongoing
With this effort, NIST is responding to industry needs for traceable, measurement solutions that can resolve spatial variations of absorbed dose at the level of individual components on a silicon wafer or bacteria on surgical instruments. Presently, there is only limited traceability to national

Probing Graphene Electronic Devices with Atomic Scale Measurements

Ongoing
Two of the remarkable features of graphene that are opening avenues to multiple applications are its high transport carrier mobility and the broad tunability of its electronic properties. Graphene charge carriers can be tuned continuously from negative carriers (i.e., electrons), to positive (holes)

Pushing the Limits of Measurement Accuracy in Atom Probe Mass Spectrometry

Ongoing
Isotopic Analysis for Isotopic Geochemistry, Nuclear Safety, and Materials Science : Atom probe tomography has a significant advantage over other forms of mass spectrometry, which typically have a combined efficiency < 5%, in terms of ionization and detection efficiency. Commercial atom probe

Quantum Conductance

Ongoing
Inset: Example of an array device design. (a) An illustration of the graphene quantized Hall array resistance device with NbTiN interconnections (dark grey) between individual QHR elements (light grey) and the positions of the bonding wires that were used for the measurement (blue). The red inset

Quantum Voltage Project

Ongoing
Researchers in the Quantum Voltage Project develop and disseminate highly accurate instruments that exploit the quantum mechanical properties of superconductive devices known as Josephson junctions (JJs), as well as measurement techniques and best-practices for using these instruments. When a JJ is

Reliability Metrologies for Advanced Electronic Interconnects

Completed
High-performance devices, such as microprocessors and memory chips, are typically composed of structures with strict dimensional tolerances and geometries and are made up of various materials, all in close proximity in a three-dimensional system. Material interactions lead to reliability issues such

Scanning Probe Microscopy for Advanced Materials and Processes

Ongoing
With a nanometer-sharp probe capable of delicate interaction with a limitless array of materials, SPM methods such as Atomic Force Microscopy (AFM) can aid in characterizing a wide range of materials in diverse environments from vacuum to biological serums. The atomic force microscope is operated in