LIQUID INSERTION PRESSURE SYSTEM FOR SANS (LIPSS)
LIPSS enables in situ SANS measurements under broad ranges of pressure and temperature, so that sample environment effects can be probed from minutes to hours1. No radiation damage and an extended q-range make HP-SANS complementary to HP-SAXS measurements, providing information on a broad range of molecular sizes, shape, aggregation, folding/unfolding, etc. The non destructive nature of neutrons allows for hysteresis effects to be probed, while contrast variation SANS can be used to highlight contributions to scattering from specific components of complex macromolecular assemblies such as viruses2 or others.
LIPSS is a high-pressure (HP) system (see specifications below): the McHugh sample cell is made of a high-nickel-content austenitic steel and is capable of withstanding a maximum pressure up to 350 MPa (3.5 kbar). A Peltier system controls the temperature between -20°C and +65°C: under pressure, subzero temperatures can be accessed in the absence of ice. The sample is loaded through an injection system that minimizes air bubbles and fills the cell completely. A separator isolates the sample from the pressurizing medium, as shown schematically in the image1. LIPSS was designed for low viscosity solutions and its performance depends on the specific environment required. It is strongly recommended that you discuss measurement needs in advance, with Susana Teixeira [scm5(at)nist.gov] or your local contact.
Past and potential applications of HP-SANS and the LIPSS sample environment include studies on:
There are ongoing efforts at the NCNR to optimize the HP BioSANS system described above, namely through improved automation, thermal insulation and improved cooling/heating power. Contact Susana Teixeira to find out more, or discuss the specific needs of your experiment.
Oliveira et al., Low Temperature and Pressure Stability of Picornaviruses: Implications for Virus Uncoating. Biophysical J. 76, 3, 1270-1279 (1999).
Habinshuti et al., Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: A review. Food Chem. 423, 136313 (2023).
Jackson & McGillivray. Protein aggregate structure under high pressure. Chem. Commun. 47, 487–489 (2011).
Seefeldt et al., High-pressure studies of aggregation of recombinant human interleukin-1 receptor antagonist: Thermodynamics, kinetics, and application to accelerated formulation studies. Protein Science 14(9): 2258–2266 (2005).
Hammouda and Clover. SANS from P85/Water-d under Pressure. Langmuir 26(9), 6625–6629 (2010).
Leseman et al., Self-Assembly at High Pressures: SANS Study of the Effect of Pressure on Microstructure of C8E5 Micelles in Water. Ind. Eng. Chem. Res. 42, 6425-6430 (2003).
Patel et al., Observing Nucleation Close to the Binodal by Perturbing Metastable Polymer Blends. Macromol. 40(5), 1675 (2007).
Ruegg et al., Effect of Pressure on a Multicomponent A/B/A-C Polymer Blend with Attractive and Repulsive Interactions. Macromol. 40(2), 355 (2007).
Ruzette et al., Pressure effects on the phase behavior of styrene/n-alkyl methacrylate block copolymers. Macromol. 36(9), 3351 (2003).
Penhalurick et al., Pressure-effects and adaptation mechanisms of ambient and deep-sea bacterial enzymes. Biophys. J. 116(3), 342a (2019).
Paul et al., Probing pressure-driven protein phase behavior via in situ high-pressure scattering methods. Acta Cryst. A 79, a127 (2022).
High Throughput, High-Pressure Small-Angle Neutron Scattering Sample Environment: a prototype work-horse system designed for low temperature measurements.
Certain trade names and company products are mentioned in the text or identified. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology (NIST), nor does it imply that the products are necessarily the best available for the purpose.
By selecting almost any of these links, you will be leaving NIST webspace. We provide these links because they may have information of interest to you. No inferences should be drawn because some sites are referenced, or not, from this page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse the views expressed, or concur with the assertions presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on these sites.
Compatible with NCNR instruments: NGB30SANS, USANS (BT5), NG7SANS, 10m SANS.
§ Please contact Susana Teixeira if you have questions regarding feasibility.