Exploits the quantum behavior of superconducting Josephson junctions and materials to develop novel superconducting electronic devices, circuits, systems, and precision measurement techniques for state-of-the-art electrical measurements.
The Superconductive Electronics Group utilizes the quantum effects of Josephson junctions in specialized superconducting integrated circuits to improve measurement technology and standards for fundamental metrology, such as for dc and ac voltage, waveform synthesis, and primary thermometry, and for applications that require high-performance, such as energy-efficient advanced computing and RF communications. The Quantum Voltage and Noise Thermometry Projects develop and disseminate standard reference instruments and measurement best practices for dc and ac voltage metrology, RF metrology and primary thermometry. The Flux Quantum Electronics Project develops cryogenic superconductive circuits and measurement techniques for advanced, energy-efficient computing, RF communications, and electrical metrology.
Presenter: Sam Benz
Fundamental standards for voltage, dc and ac, are based on the Josephson Effect. In this talk from the Applied Superconductivity Conference 2016, Sam Benz discusses the development, state-of-the-art, and future prospects for these standards.
PDF Files: Abstract | Annotated slides