Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Dan Becker (Assoc)

Dr. Daniel Becker is a Research Associate at the University of Colorado (CU), as well as a member of NIST’s Quantum Sensors Group (QSG). He has worked in the fields of low temperature sensors, electronics and cryogenic systems since 2006, and currently leads efforts in the QSG to develop and deploy gamma-ray spectrometers using cryogenic microcalorimeters, including creation of automated data analysis pipelines. He was also a member of the QSG team that developed the microwave SQUID multiplexer, a new microwave-frequency multiplexed readout system for TES detectors. As a graduate student working in the QSG, he built a video-rate passive imaging system operating at 350 GHz using cryogenic detectors, and designed microwave components for cryogenic detectors that have been deployed in multiple Cosmic Microwave Background observatories. Prior to his scientific career, Dr. Becker worked for 12 years as a computer programmer and consultant.

Publications

Towards Precision Spectroscopy of Antiprotonic Atoms for Probing Strong-field QED

Author(s)
Gonçalo Baptista, Shikha Rathi, Michael Roosa, Quentin Senetaire, Jonas Sommerfeldt, Toshiyuki Azuma, Daniel Becker, Francois Butin, Ofir Eizenberg, Joseph Fowler, Hiroyuki Fujioka, Davide Gamba, Nabil Garroum, Mauro Guerra, Tadashi Hashimoto, Takashi Higuchi, Paul Indelicato, Jorge Machado, Kelsey Morgan, Francois Nez, Jason Nobles, Ben Ohayon, Shinji Okada, Daniel Schmidt, Daniel Swetz, Joel Ullom, Pauline Yzombard, Marco Zito, Nancy Paul
PAX (antiProtonic Atom X-ray spectroscopy) is a new experiment with the aim to test strong-field quantum electrodynamics (QED) effects by performing high

Effects of Stray Magnetic Field on Transition-edge Sensors in Gamma-ray Microcalorimeters

Author(s)
Mark Keller, Abigail Wessels, Dan Becker, Douglas Bennett, Matthew Carpenter, Mark Croce, Jozsef Imrek, Johnathon Gard, John Mates, Kelsey Morgan, Nathan Ortiz, Dan Schmidt, Katherine Schreiber, Daniel Swetz, Joel Ullom
Superconducting transition-edge sensors (TESs) used in x-ray and γ-ray microcalorimeters suffer degraded performance if cooled in a magnetic field B sufficient

A tabletop x-ray tomography instrument for nanometer-scale imaging: demonstration of the 1,000-element transition-edge sensor subarray

Author(s)
Paul Szypryt, Nathan J. Nakamura, Dan Becker, Douglas Bennett, Amber L. Dagel, W.Bertrand (Randy) Doriese, Joseph Fowler, Johnathon Gard, J. Zachariah Harris, Gene C. Hilton, Jozsef Imrek, Edward S. Jimenez, Kurt W. Larson, Zachary H. Levine, John Mates, Daniel McArthur, Luis Miaja Avila, Kelsey Morgan, Galen O'Neil, Nathan Ortiz, Christine G. Pappas, Dan Schmidt, Kyle R. Thompson, Joel Ullom, Leila R. Vale, Michael Vissers, Christopher Walker, Joel Weber, Abigail Wessels, Jason W. Wheeler, Daniel Swetz
We report on the 1,000-element transition-edge sensor (TES) x-ray spectrometer implementation of the TOMographic Circuit Analysis Tool (TOMCAT). TOMCAT combines

Toward a New Primary Standardization of Radionuclide Massic Activity Using Microcalorimetry and Quantitative Milligram-Scale Samples

Author(s)
Ryan P. Fitzgerald, Bradley Alpert, Dan Becker, Denis E. Bergeron, Richard Essex, Kelsey Morgan, Svetlana Nour, Galen O'Neil, Dan Schmidt, Gordon A. Shaw, Daniel Swetz, R. Michael Verkouteren, Daikang Yan
We present a new paradigm for the primary standardization of radionuclide activity per mass of solution (Bq/g). Two key enabling capabilities are 4π decay
Created May 11, 2019, Updated October 11, 2023