Light elements such as helium, lithium, boron, and nitrogen are essential constituents in materials that enable energy technologies; lithium ion batteries, catalysts, solar silicon, and nuclear fusion. Neutron Depth Profiling (NDP), a nuclear analytical technique, determines both the amount and physical distribution of these elements usually in situ and without damage to the material. For example, with an intense beam of cold neutrons, lithium distribution is mapped dynamically as batteries are repeatedly charged and discharged. The data enables researchers to optimize battery structures and analyze failure mechanisms. The state-of-the-art NDP facility serves industry, academia, and government agencies at the NIST Center for Neutron Research (NCNR).
The video below is a 10 Minute Introduction to Neutron Depth Profiling
The NDP instrument uses a > 1E+9 cm2/s thermal-equivalent neutron beam. Measurements occur in a high-vacuum chamber. Samples can be rastered in two dimensions with submicrometer resolution. Detection and quantitation limits are element dependent but typically range from 1E+12 to 1E+15 atoms/cm2. Electrical feed-through connections and heating stages are available in the chamber.
lithium ion batteries, boron in silicon, semiconductors dielectrics, optical waveguides, helium retention in fusion materials, element profiles in glass, catalysis, thin coatings