Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

The hyperfine Paschen-Back Faraday effect

Published

Author(s)

Svenja A. Knappe, M.A. Zentile, Rebecca Andrews, L. Weller, C.S. Adams, I.G. Hughes

Abstract

We investigate experimentally and theoretically the Faraday effect in an atomic medium in the hyperfine Paschen-Back regime, where the Zeeman interaction is larger than the hyperfine splitting. We use a small permanent magnet and a micro-fabricated vapour cell, giving magnetic fields of the order of a Tesla. We show that for low absorption and small rotation angles, the refractive index is well approximated by the Faraday rotation signal, giving a simple way to measure the atomic refractive index. Fitting to the atomic spectra we achieve magnetic field sensitivity at the 10-4 level. Finally we note that the Faraday signal shows zero crossings which can be used as temperature insensitive error signals for laser frequency stabilisation at large detuning. The theoretical sensitivity for 87Rb is found to be 40 kHz/°C.
Citation
Journal of Physics B-Atomic Molecular and Optical Physics
Volume
47

Keywords

atomic spectroscopy, Faraday effect, microfabricated vapor cell

Citation

Knappe, S. , Zentile, M. , Andrews, R. , Weller, L. , Adams, C. and Hughes, I. (2014), The hyperfine Paschen-Back Faraday effect, Journal of Physics B-Atomic Molecular and Optical Physics (Accessed December 30, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created March 26, 2014, Updated February 19, 2017