An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Iris Quality Calibration and Evaluation (IQCE): Evaluation Report
Published
Author(s)
Elham Tabassi, Patrick J. Grother, Wayne J. Salamon
Abstract
Iris is rapidly gaining acceptance and support as a viable biometric. Several large scale identity management applications are either using or considering iris as their secondary or primary biometric for verification. While there are several academic publications addressing the problem of iris image quality, NIST Iris Quality Calibration and Evaluation (IQCE) is the first public challenge in iris image quality aimed at identifying iris image quality components that are algorithm- or camera-agnostic. IQCE evaluated 14 iris image quality assessment algorithms in their effectiveness in predicting the performance of iris recognition algorithms, their computational efficiency and their robustness. Interestingly, the implementations which are the best predictor of recognition performance are also the fastset (i.e., the shortest computation time) and with zero failure to computation, are the most robust. To quantitatively support the development of the international iris image quality standard (ISO/IEC 29794-6), IQCE also examined the effect of 14 iris image covariates on performance. This evaluation supports homeland security, counter-terrorism, and border control applications by enhancing reliability and accuracy of iris recognition, and significantly improves requirement planning and system design.
Tabassi, E.
, Grother, P.
and Salamon, W.
(2011),
Iris Quality Calibration and Evaluation (IQCE): Evaluation Report, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.IR.7820
(Accessed December 3, 2024)