An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Prediction of DNA Single-Strand Conformational Polymorphism: Analysis by Capillary Electrophoresis and Computerized DNA Modeling
Published
Author(s)
Donald H. Atha, W Kasprzak, C D. O'Connell, B A. Shapiro
Abstract
We have analyzed previously three representative p53 single-point mutations by capillary-electrophoresis single-strand conformational polymorphism (CE-SSCP) . In the current study, we compared our CE-SSCP. In the current study, we compared our CE-SSCP results with the potential secondary structures predicted by an RNA/DNA-folding algorithm with DNA energy rules, used in conjunction with a computer analysis workbench called STRUCTURELAB. Each of these mutations produces measurable shifts in CE migration times relative to wild type. Using computerized folding analysis, each of the mutations was found to have a conformational difference relative to wild type, which accounts for the observed differences in CE migration. Additional properties exhibited in the CE electropherograms were also explained using the computerized analysis. These include the appearance of secondary peaks and the temperature dependence of the electrophoretic patterns. The results yield insight into the mechanism of SSCP and how the conditions of this measurement, especially temperature, may be optimized to improve the sensitivity of the SSCP method. The results may also impact other diagnostic methods, which would benefit by a better understanding of DNA single-strand conformation polymorphisms to optimize conditions for enzymatic cleavage and DNA hybridization reactions.
Citation
Nucleic Acids Research
Volume
29
Issue
22
Pub Type
Journals
Keywords
DNA conformation, p53 mutation detection, RNA/DNA folding, secondary structures, single strand conformation polymorphism, SSCP
Atha, D.
, Kasprzak, W.
, O'Connell, C.
and Shapiro, B.
(2001),
Prediction of DNA Single-Strand Conformational Polymorphism: Analysis by Capillary Electrophoresis and Computerized DNA Modeling, Nucleic Acids Research
(Accessed January 2, 2025)