Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

SiO2/Si3N4/A12O3 Stacks on Silicon for Scaled-Down Memory Devices: Effects of Interfaces and Thermal Annealing

Published

Author(s)

M Lisiansky, A Heiman, M Kovler, Y Roizin, Igor Levin, A Gladkikh, M Oksman, R Edrei, A A. Hofman, Y Shnieder, T Claasen

Abstract

Effects of interfaces and thermal annealing on the electrical performance of the SiO2/Si3N4/A12O3 (ONA) stacks in non-volatile memory devices were investigated. Structural and electrical characterization demonstrated the principal role of the Si3N4/A12O3 and Al2O3/Metal-Gate interfaces in controlling the charge retention properties of the ONA-based memory cells. Memory cells that employ both electron and hole trapping were fabricated using a controlled oxidation of the Si3N4 surface prior to the growth of Al2O3, a high-temperature annealing of the entire stack in the N2+O2 atmosphere, and a metal gate electrode having a high work function (e.g. Pt). These devices exhibited electrical performance superior to that of their existing SiO2/Si3N4/SiO2 (SONOS) analogs featuring significantly larger memory windows, lower program/erase voltages, and enhanced charge retention characteristics.
Citation
Applied Physics Letters

Keywords

annealing, flash memory, interfaces, silicon nitride, silicon oxide

Citation

Lisiansky, M. , Heiman, A. , Kovler, M. , Roizin, Y. , Levin, I. , Gladkikh, A. , Oksman, M. , Edrei, R. , Hofman, A. , Shnieder, Y. and Claasen, T. (2021), SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub>/A1<sub>2</sub>O<sub>3</sub> Stacks on Silicon for Scaled-Down Memory Devices: Effects of Interfaces and Thermal Annealing, Applied Physics Letters (Accessed January 2, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created October 12, 2021