I use theory, particle-based simulations, and quantum-chemical calculations to perform interdisciplinary studies of nanoscale phenomena with a special focus on the properties of solid-solid/solid-liquid interfaces and the effects of confinement. My interests range from the frictional properties of two-dimensional materials to the design of nanoscale/biomimetic devices for molecular sensing, separation, and energy storage.
If you are a postdoctoral candidate, we have openings that are immediately available to all US Citizens through the NRC Research Associateship Program (see below). If you have any questions, please email me.
Sub-nanometer pores in two-dimensional materials for nanofluidics, sensing, and energy applications
Theory and Simulation of Nanoscale Systems and Devices
Selected publications:
A. Smolyanitsky and B. Luan, Nanopores in Atomically Thin 2D Nanosheets Limit Aqueous Single-Stranded DNA Transport. Phys. Rev. Lett. 2021, 127(13), 138103.
A. Smolyanitsky, A. Fang, A.F. Kazakov, and E. Paulechka, Ion transport across solid-state ion channels perturbed by directed strain. Nanoscale 2020, 12(18), 10328-10334
A. Fang and A. Smolyanitsky, Large Variations in the Composition of Ionic Liquid-Solvent Mixtures in Nanoscale Confinement. ACS Applied Materials & Interfaces 2019, 11(30), 27243-27250.
A. Fang, K. Kroenlein, D. Riccardi, and A. Smolyanitsky, Highly mechanosensitive ion channels from graphene-embedded crown ethers. Nature Materials 2019, 18(1), 76-81.
A. Smolyanitsky, E. Paulechka, and K. Kroenlein, Aqueous Ion Trapping and Transport in Graphene-Embedded 18-crown-6 Ether Pores. ACS Nano 2018, 12(7), 6677-6684.
A. Smolyanitsky, B. I. Yakobson, T. A. Wassenaar, E. Paulechka, K. Kroenlein, A MoS2-Based Capacitive Displacement Sensor for DNA Sequencing. ACS Nano 2016, 10(9), 9009-9016.
E. Paulechka, T. A. Wassenaar, K. Kroenlein, A. Kazakov, and A. Smolyanitsky, Nucleobase-functionalized graphene nanoribbons for accurate high-speed DNA sequencing. Nanoscale 2016, 8 (4), 1861-1867.
Z. Deng, A. Smolyanitsky, Q. Li, X.-Q. Feng, R. J. Cannara, Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nature Materials 2012, 11 (12), 1032-1037.
A. Smolyanitsky, J. P. Killgore, V. K. Tewary, Effect of elastic deformation on frictional properties of few-layer graphene. Phys. Rev. B 2012, 85 (3), 035412.
A. Smolyanitsky, J. P. Killgore, Anomalous friction in suspended graphene. Phys. Rev. B 2012, 86 (12).