NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Nanopores in Atomically Thin 2D Nanosheets Limit Aqueous Single-Stranded DNA Transport
Published
Author(s)
Alexander Smolyanitsky, Binquan Luan
Abstract
Nanopores in 2D materials are highly desirable for DNA sequencing, yet achieving single-stranded DNA (ssDNA) transport through them is challenging. Using density functional theory calculations and molecular dynamics simulations we show that ssDNA transport through a pore in monolayer hexagonal boron nitride (h-BN) is marked by a basic nanomechanical conflict. It arises from the notably inhomogeneous flexural rigidity of ssDNA and causes high friction via transient DNA desorption costs exacerbated by solvation effects. For a similarly sized pore in bilayer h-BN, its self-passivated atomically smooth edge enables continuous ssDNA transport. Our findings shed light on the fundamental physics of biopolymer transport through pores in 2D materials.
Smolyanitsky, A.
and Luan, B.
(2021),
Nanopores in Atomically Thin 2D Nanosheets Limit Aqueous Single-Stranded DNA Transport, Physical Review Letters, [online], https://doi.org/10.1103/PhysRevLett.127.138103, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931254
(Accessed October 14, 2025)