Huber is a member of the neutron physics group at NIST. His research focuses on neutron diffraction and interferometric techniques in order to provide insights into unresolved questions in fundamental physics. This is mainly accomplished by using perfect-crystal neutron interferometry to perform precision phase measurements on neutron-matter interactions. Being a diverse instrument, perfect-crystal neutron interferometry experiments range from quantum information science, material science, testing postulates of quantum mechanics, and searching for new short-range forces. Huber has worked on increasing the sensitivity, robustness and usability of interferometric methods. This includes the development of a far-field grating based interferometer which has applications in both fundamental and material science. The interferometer facility regularly collaborates with several universities and hosts both domestic and foreign students and post-docs.
Starting as a NIST guest researcher in 2003, Huber began work using single crystal neutron interferometry to measure nuclear scattering data for the improvement of nuclear models and effective field theories. Michael received his Ph.D. in physics from Tulane University in 2009 based on his work at NIST. He was awarded an NRC post-doc before being hired as an NIST staff scientist. Currently, he is the principle for the neutron interferometry program.