Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Nikolai Klimov (Fed)

Dr. Nikolai N. Klimov is an experimental condensed matter physicist and a Project Leader in Nanoscale Fabrication and Photonics in the Fundamental Thermodynamics Group within the Physical Measurement Laboratory (PML). He received Samme Cum Laude in both B.S. (2000) and M.S. (2002) in Physics and Applied Mathematics from the Moscow Institute of Physics and Technology (MIPT) and Ph.D. (2008) in Experimental Condensed Matter Physics from Rutgers University. His expertise is in physics and nanofabrication of photonics-based nanoscale sensors and standards, semiconductor devices and structures, and low-dimensional systems, including devices based on 2D atomic crystal materials.

After obtaining his Ph.D. Nikolai worked at NIST (Center for Nanoscale Science and Technology / PML) as a Postdoctoral Research Associate (2009-2015) from the University of Maryland (UMD), focusing on the development of gated graphene-based nanodevices and exploring graphene’s electrical properties in real device structures using both magneto-transport and ultra-high vacuum scanning tunneling microscopy and spectroscopy measurement techniques. In 2015, Dr. Klimov joined the Fundamental Thermodynamics Group as a Research Scientist (UMD guest researcher) focusing on the development of nanophotonics temperature sensors.

Since joining the NIST staff in 2018, Dr. Klimov’s research has focused on developing new field-deployable, nanophotonics-based quantum SI sensors and primary standards for temperature, pressure, vacuum, humidity, and radiation dosimetry. Within this research activity, Dr. Klimov has pioneered the development of an on-chip integrated ultra-high resolution photonic thermometer (SPoT) that has the potential to surpass the performance of standard platinum resistance thermometers (SPRTs). Dr. Klimov continues leading the development of SPoT technology with the aim to evolve SPoT into a robust, field-deployable device that surpasses the metrological performance of SPRTs, with the added benefits of reduced recalibration frequency and improved shock resistance.

Besides Photonic Thermometry, Dr. Klimov is also developing the next-generation chip-scale photonic thermal transfer standard, grating-based devices for next-generation neutron interferometric imaging, and lithium-niobate photonics for quantum information processing. Dr. Klimov is a recipient of the NIST-ARRA Postdoctoral Fellowship (NIST/UMD), Distinguished Associate Award (PML, NIST), and two Department of Commerce Bronze Medals.

In 2024, Dr. Klimov was awarded the prestigious Presidential Early Career Award for Science and Engineering (PECASE) “for transformational research in photonic sensors for thermometry, dosimetry, humidity, and vacuum and for working with industry partners to bring these new technologies to the marketplace”.

SELECTED PROGRAMS/PROJECTS

SELECTED PUBLICATIONS

  • Optimization of waveguide fabrication processes in lithium-niobate-on-insulator platform, CH.S.S.P. Kumar, *N.N. Klimov, *P.S. Kuo, AIP Advances 14, 065317 (2024), (* Corresponding authors); doi.org/10.1063/6.0003522
  • Emission Ghost Imaging: reconstruction with data augmentation,  K.J. Coakley, H.H. Chen-Mayer, B. Ravel, D. Josell, N.N. Klimov, S.M. Robinson, D.S. Hussey, Phys. Rev. A 109 (2), 023501 (2024); doi.org/10.1103/PhysRevA.109.023501
  • Data-driven simulations for training AI-based segmentation of neutron images. P.S. Sathe, C.M. Wolf, Y. Kim, S.M. Robinson, M.C. Daugherty, R.P. Murphy, J. LaManna, M.G. Huber, D.L. Jacobson, P.A. Kienzle, K.M. Weigandt, N.N. Klimov, D.S. Hussey, P, Bajcsy. Scientific Reports 14 (1), 6614 (2024); doi.org/10.1038/s41598-024-56409-3.
  • Small-angle scattering and dark-field imaging for validation of a new neutron far-field interferometer, C.M. Wolf, P. Bajcsy, W.-R. Chen, R.M. Dalgliesh, M.C. Daugherty, L. De Campo, F. Funama, L. He, M.G. Huber, D.L. Jacobson, P. Kienzle, Y. Kim, H. Kim, N.N. Klimov, J.M. LaManna, F. Li, A.M. Long, R. Murphy, G. Nagy, S.M. Robinson, P. Sathe, G.N. Smith, A. Sokolova, S.C. Vogel, E.B. Watkins, Y. Zhang, D.S. Hussey, K.M. Weigandt, J. App. Cryst 57, 1841-1851 (2024); doi.org/10.1107/S1600576724009944
  • X-ray computed tomography flaw phantom development: stepper photolithography and deep reactive ion etching, F.H. Kim, S.M. Robinson, N.N. Klimov, J.H.J. Scott, NIST Advanced Manufacturing Series 100-63, (2024). doi.org/10.6028/NIST.AMS.100-63
  • Neutron Interferometry Using a Single Modulated Phase Grating, I. Hidrovo, J.Dey, H. Meyer, D. S. Hussey, N.N. Klimov, L. G. Butler, K. Ham, W. Newhauser, Rev. Sci. Instrum, 94, 045110 (2023); doi.org/10.1063/5.0106706
  • Grating magneto-optical traps with complicated level structures, D.S. Barker, P.K. Elgee, A. Sitaram, E.B. Norrgard, N.N. Klimov, G.K. Campbell, S. Eckel, New J. Phys 25 103046 (2023); doi.org/10.1088/1367-2630/ad02ea
  • Neutron dark field tomography of hierarchical structures, J.M. LaManna , D.S. Hussey , C.M. Wolf,  Y. Kim , S.M. Robinson, M.C. Daugherty, R.P. Murphy, P.A. Kienzle, N.N. Klimov, M.G. Huber, P.N. Bajcsy, D.L. Jacobson, K.M. Weigandt, Microsc. Microanal., 28 (Suppl 1), 280 (2022); doi.org/10.1017/S1431927622001921
  • Λ-enhanced gray molasses in a tetrahedral laser beam geometry, D. S. Barker, E. B. Norrgard, N.N. Klimov, J. A. Fedchak, J. Scherschligt, and S. Eckel, Optics Express 30, 9959 (2022); doi.org/10.1364/OE.444711
  • Precise quantum measurement of vacuum with cold atoms, D.S. Barker, B.P. Acharya, J.A. Fedchak, N.N. Klimov, E.P. Norrgard, J. Scherschligt, E. Tiesinga, S. Eckel, Rev. Sci. Instrum. 93, 121101 (2022); doi.org/10.1063/0120500
  • Micrometrology in pursuit of quantum radiation standards, Fitzgerald, Ahmed, Bergeron, N.N. Klimov, Schmidt, Tosh, Measurement: Sensors 18, 1000295 (2021); doi.org/10.1117/12.2505898
  • Progress towards comparison of quantum and classing vacuum standards, Barker, N.N. Klimov, Tiesinga, Fedchak, Scherschligt, Eckel, Measurement: Sensors 18, 100229 (2021); doi.org/10.1016/j.measen.2021.100229
  • Magneto-optical trapping using planar optics, W.R. McGehee, W. Zhu, D.S. Barker, D. Westly, A. Yulaev, N.N. Klimov, A. Agrawal, S. Eckel, V. Aksyuk, J.J. McClelland, New J. of Phys., 23 (2021); doi.org/10.1088/1367-2630/abdce3
  • Confinement of an alkaline-earth element in a grating magneto-optical trap, A. Sitaram, P.S. Elgee, G.K. Campbell, N.N. Klimov, S. Eckel, D.S. Barker. Rev. of Scient. Instr. 91, 103202 (2020); doi.org/10.1063/5.0019551
  • Nuclear-spin dependent parity violation in optical trapped polyatomic molecules, E.B. Norrgard, D.S. Barker, S.P. Eckel, J.A. Fedchak, N.N. Klimov, J. Scherschligt, Nature Comm. Phys. 2, 77 (2019); doi.org/10.1038/s42005-019-0181-1
  • Single-beam slower and magneto-optical trap using a nano-fabricated grating, D.S. Barker, E. Norrgard, N.N. Klimov, J. Fedchak, J. Scherschligt, S. Eckel, Phys. Rev. A 11, 064023 (2019). doi.org/10.1103/PhysRevApplied.11.064023
  • Nuclear-spin dependent parity violation in optical trapped polyatomic molecules, E.B. Norrgard, D.S. Barker, S.P. Eckel, J.A. Fedchak, N.N. Klimov, J. Scherschligt, Nature Comm. Phys. 2, 77 (2019). doi.org/10.1038/s42005-019-0181-1
  • Review article: Quantum-based vacuum metrology at the National Institute of Standards and Technology, J. Scherschligt, J.A. Fedchak, Z. Ahmed, D.S. Barker, K. Douglass, S. Eckel, E. Hanson, J. Hendricks, N.N. Klimov, T. Purdy, J. Ricker, R. Singh, J. Stone, JVST A 36, 040801 (2018). doi.org/10.1116/1.5033568
  • Challenges to miniaturizing cold atom technology for deployable vacuum metrology, S. Eckel, D. Barker, J.A. Fedchak, N.N. Klimov, E.B. Norrgard, J. Scherschligt; C. Makrides, E. Tiesinga, Metrologia 55(5), S182 (2018). doi.org/10.1088/1681-7575/aadbe4
  • Towards replacing resistance thermometry with photonic thermometry, N.N. Klimov, T.P. Purdy, Z. Ahmed, Sensors & Actuators A 269, 308-312 (2018). doi.org/10.1016/j.sna.2017.11.055
  • Assessing Radiation Hardness of Silicon Photonic Sensors, Z. Ahmed, L. Cumberland, R. Tosh, N.N. Klimov, I.M. Pazos, R.P. Fitzgerald, Scientific Reports 8, 13007 (2018). doi.org/10.1038/s41598-018-31286-9
  • Photonic thermometry: upending 100 year-old paradigm in temperature metrology, Z. Ahmed, N.N. Klimov, T. Purdy, T. Herman, K.O. Douglass, R.P. Fitzgerald, SPEI Proceedings. doi.org/10.1117/12.2505898
  • Development of a new UHV/XHV pressure standard (Cold Atom Vacuum Standard), J.K. Scherschligt, J.A. Fedchak, D.S. Barker, S.P. Eckel, N.N. Klimov, C. Makrides, E. Tiesinga, Metrologia 54, S125-S132 (2017) (a Special Issue Article). doi.org/10.1088/1681-7575/aa8a7b
  • Coulomb drag and counterflow Seebeck coefficient in bilayer-graphene double layers J. Hu, D.B. Newell, J. Tian, N.N. Klimov, D.B. Newell, Y.P. Chen, Nano Energy40, 42-48 (2017). doi.org/10.1016/j.nanoen.2017.07.035
  • Towards photonics enabled quantum metrology of temperature, pressure and vacuum, Z. Ahmed, N.N. Klimov, J. Hendricks, Encyclopedia of Nanoscience and Nanotechnology, book chapter (2016).
  • Edge-state transport in graphene p-n junctions in the quantum Hall regime, N.N. Klimov, S.T. Le, J. Yan, P. Agnihotri, E. Comfort, J.U. Lee, D.B. Newell, C.A. Richter, Phys. Rev. B: Rapid Communications 92, 241301 (2015). doi.org/10.1103/PhysRevB.92.241301
  • On-Chip silicon waveguide Bragg grating photonic temperature sensor, N.N. Klimov, S. Mittal, M. Berger, Z. Ahmed, Optics Letters 40(17), 3934-3936 (2015). doi.org/10.1364/OL.40.003934
  • Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene, Z. Deng, N.N. Klimov, S.D. Solares, T. Li, H. Xu, R.J. Cannara, Langmuir 29 (1), 235 (2013). doi.org/10.1021/la304079a
  • Electro-mechanical properties of graphene drumheads, N.N. Klimov, S. Jung, S. Zhu, T. Li, C.A. Wright, S.D. Solares, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Science 336, 1557-1561 (2012). doi.org/10.1126/science.1220335
  • Microscopic polarization in bilayer graphene, G.M. Rutter, S.Y. Jung, N.N. Klimov, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Nature Physics 7, 649-655 (2011). doi.org/10.1038/nphys1988
  • Evolution of microscopic localization in graphene in a magnetic field: from scattering resonances to quantum dots, S.Y. Jung, G.M. Rutter, N.N. Klimov, D.B. Newell, I. Calizo, A.R. Hight-Walker, N.B. Zhitenev, J.A. Stroscio, Nature Physics 7, 245-251 (2011). doi.org/10.1038/nphys1866
  • Mechanism for puddle formation in graphene, S. Adam, S.Y. Jung, N.N. Klimov, N.B. Zhitenev, J.A. Stroscio, M.D. Stiles, Phys. Rev. B 84, 235421 (2011). doi.org/10.1103/PhysRevB.84.235421
  • Interaction effects in the conductivity of a two-valley electron system in high-mobility Si inversion layers, N.N. Klimov, D.A. Knyazev, O.E. Omel’yanovskii, V.M. Pudalov, H. Kojima, M.E. Gershenson, Phys. Rev. B 78, 195308 (2008), (Editor’s Suggestion). doi.org/10.1103/PhysRevB.78.195308
  • Intervalley scattering and weak localization in Si-based two-dimensional structures, A.Yu. Kuntsevich, N.N. Klimov, S.A. Tarasenko, N.S. Averkiev, V.M. Pudalov, H. Kojima, M.E. Gershenson, Phys. Rev. B 75, 195330 (2007). doi.org/10.1103/PhysRevB.75.195330 

Publications

Emission Ghost Imaging: reconstruction with data augmentation

Author(s)
Kevin J. Coakley, Heather H. Chen-Mayer, Bruce D. Ravel, Daniel Josell, Nikolai Klimov, Sarah Robinson, Daniel S. Hussey
Ghost Imaging enables 2D reconstruction of an object even though particles transmitted or emitted by the object of interest are detected with a single pixel

Grating magneto-optical traps with complicated level structures

Author(s)
Daniel Barker, Peter Elgee, Ananya Sitaram, Eric Norrgard, Nikolai Klimov, Gretchen K. Campbell, Stephen Eckel
We study the forces and optical pumping within grating magneto-optical traps (MOTs) operating on transitions with non-trivial level structure. In contrast to

Patents (2018-Present)

Photonic Thermometer Module Assembly And Performing Photonic Thermometry

NIST Inventors
Nikolai Klimov , Tobias Herman and Zeeshan Ahmed
A photonic thermometer module assembly includes: a sheath; a sheath bottom plug; a sheath top flange; a top sealing flange; a heat exchanger; a photonic thermometer disposed on the heat exchanger such that the photonic thermometer determines a temperature of the sheath; and an optical fiber array in

Photonic Bolometer And Performing Broadband High-Absorption Photonic Bolometry

NIST Inventors
Nikolai Klimov , Nathan A Tomlin and Chris Yung
A photonic bolometer includes: a photonic chip; a weak thermal link; a thermally-isolated member, and the weak thermal link thermally isolates the thermally-isolated member from the photonic chip; a photonic temperature sensor; a chip waveguide in optical communication with the photonic temperature

Photonic Bolometer and Broadband High-Absorption Photonic Bolometry

NIST Inventors
Nikolai Klimov , Nathan A Tomlin and Chris Yung
A photonic bolometer includes: a photonic chip; a weak thermal link; a thermally-isolated member, and the weak thermal link thermally isolates the thermally-isolated member from the photonic chip; a photonic temperature sensor; a chip waveguide in optical communication with the photonic temperature

Photonic Quantum Dew Point Sensor

NIST Inventors
Tobias Herman , Nikolai Klimov and Thomas Purdy
A photonic quantum dew point sensor determines a dew point of an analyte and includes a common substrate; a photonic dew sensor on the common substrate and exposed for direct contact with the analyte; a photonic temperature sensor on the common substrate; an optomechanical temperature sensor on the

Uniaxial Counter-Propagating Monolaser Atom Trap

NIST Inventors
Stephen Eckel , James A. Fedchak , Julia Scherschligt , Daniel Barker , Eric Norrgard and Nikolai Klimov
A uniaxial counter-propagating monolaser atom trap cools and traps atoms with a single a laser beam and includes: an atom slower that slows atoms to form slowed atoms; an optical diffractor including: a first diffraction grating that receives primary light and produces first reflected light; a
Created October 9, 2019, Updated March 10, 2025