Dr. Nikolai N. Klimov is an experimental condensed matter physicist and a Project Leader in Nanoscale Fabrication and Photonics in the Fundamental Thermodynamics Group within the Physical Measurement Laboratory (PML). He received Samme Cum Laude in both B.S. (2000) and M.S. (2002) in Physics and Applied Mathematics from the Moscow Institute of Physics and Technology (MIPT) and Ph.D. (2008) in Experimental Condensed Matter Physics from Rutgers University. His expertise is in physics and nanofabrication of photonics-based nanoscale sensors and standards, semiconductor devices and structures, and low-dimensional systems, including devices based on 2D atomic crystal materials.
After obtaining his Ph.D. Nikolai worked at NIST (Center for Nanoscale Science and Technology / PML) as a Postdoctoral Research Associate (2009-2015) from the University of Maryland (UMD), focusing on the development of gated graphene-based nanodevices and exploring graphene’s electrical properties in real device structures using both magneto-transport and ultra-high vacuum scanning tunneling microscopy and spectroscopy measurement techniques. In 2015, Dr. Klimov joined the Fundamental Thermodynamics Group as a Research Scientist (UMD guest researcher) focusing on the development of nanophotonics temperature sensors.
Since joining the NIST staff in 2018, Dr. Klimov’s research has focused on developing new field-deployable, nanophotonics-based quantum SI sensors and primary standards for temperature, pressure, vacuum, humidity, and radiation dosimetry. Within this research activity, Dr. Klimov has pioneered the development of an on-chip integrated ultra-high resolution photonic thermometer (SPoT) that has the potential to surpass the performance of standard platinum resistance thermometers (SPRTs). Dr. Klimov continues leading the development of SPoT technology with the aim to evolve SPoT into a robust, field-deployable device that surpasses the metrological performance of SPRTs, with the added benefits of reduced recalibration frequency and improved shock resistance.
Besides Photonic Thermometry, Dr. Klimov is also developing the next-generation chip-scale photonic thermal transfer standard, grating-based devices for next-generation neutron interferometric imaging, and lithium-niobate photonics for quantum information processing. Dr. Klimov is a recipient of the NIST-ARRA Postdoctoral Fellowship (NIST/UMD), Distinguished Associate Award (PML, NIST), and two Department of Commerce Bronze Medals.
In 2024, Dr. Klimov was awarded the prestigious Presidential Early Career Award for Science and Engineering (PECASE) “for transformational research in photonic sensors for thermometry, dosimetry, humidity, and vacuum and for working with industry partners to bring these new technologies to the marketplace”.
SELECTED PROGRAMS/PROJECTS
SELECTED PUBLICATIONS
- Optimization of waveguide fabrication processes in lithium-niobate-on-insulator platform, CH.S.S.P. Kumar, *N.N. Klimov, *P.S. Kuo, AIP Advances 14, 065317 (2024), (* Corresponding authors); doi.org/10.1063/6.0003522
- Emission Ghost Imaging: reconstruction with data augmentation, K.J. Coakley, H.H. Chen-Mayer, B. Ravel, D. Josell, N.N. Klimov, S.M. Robinson, D.S. Hussey, Phys. Rev. A 109 (2), 023501 (2024); doi.org/10.1103/PhysRevA.109.023501
- Data-driven simulations for training AI-based segmentation of neutron images. P.S. Sathe, C.M. Wolf, Y. Kim, S.M. Robinson, M.C. Daugherty, R.P. Murphy, J. LaManna, M.G. Huber, D.L. Jacobson, P.A. Kienzle, K.M. Weigandt, N.N. Klimov, D.S. Hussey, P, Bajcsy. Scientific Reports 14 (1), 6614 (2024); doi.org/10.1038/s41598-024-56409-3.
- Small-angle scattering and dark-field imaging for validation of a new neutron far-field interferometer, C.M. Wolf, P. Bajcsy, W.-R. Chen, R.M. Dalgliesh, M.C. Daugherty, L. De Campo, F. Funama, L. He, M.G. Huber, D.L. Jacobson, P. Kienzle, Y. Kim, H. Kim, N.N. Klimov, J.M. LaManna, F. Li, A.M. Long, R. Murphy, G. Nagy, S.M. Robinson, P. Sathe, G.N. Smith, A. Sokolova, S.C. Vogel, E.B. Watkins, Y. Zhang, D.S. Hussey, K.M. Weigandt, J. App. Cryst 57, 1841-1851 (2024); doi.org/10.1107/S1600576724009944
- X-ray computed tomography flaw phantom development: stepper photolithography and deep reactive ion etching, F.H. Kim, S.M. Robinson, N.N. Klimov, J.H.J. Scott, NIST Advanced Manufacturing Series 100-63, (2024). doi.org/10.6028/NIST.AMS.100-63
- Neutron Interferometry Using a Single Modulated Phase Grating, I. Hidrovo, J.Dey, H. Meyer, D. S. Hussey, N.N. Klimov, L. G. Butler, K. Ham, W. Newhauser, Rev. Sci. Instrum, 94, 045110 (2023); doi.org/10.1063/5.0106706
- Grating magneto-optical traps with complicated level structures, D.S. Barker, P.K. Elgee, A. Sitaram, E.B. Norrgard, N.N. Klimov, G.K. Campbell, S. Eckel, New J. Phys 25 103046 (2023); doi.org/10.1088/1367-2630/ad02ea
- Neutron dark field tomography of hierarchical structures, J.M. LaManna , D.S. Hussey , C.M. Wolf, Y. Kim , S.M. Robinson, M.C. Daugherty, R.P. Murphy, P.A. Kienzle, N.N. Klimov, M.G. Huber, P.N. Bajcsy, D.L. Jacobson, K.M. Weigandt, Microsc. Microanal., 28 (Suppl 1), 280 (2022); doi.org/10.1017/S1431927622001921
- Λ-enhanced gray molasses in a tetrahedral laser beam geometry, D. S. Barker, E. B. Norrgard, N.N. Klimov, J. A. Fedchak, J. Scherschligt, and S. Eckel, Optics Express 30, 9959 (2022); doi.org/10.1364/OE.444711
- Precise quantum measurement of vacuum with cold atoms, D.S. Barker, B.P. Acharya, J.A. Fedchak, N.N. Klimov, E.P. Norrgard, J. Scherschligt, E. Tiesinga, S. Eckel, Rev. Sci. Instrum. 93, 121101 (2022); doi.org/10.1063/0120500
- Micrometrology in pursuit of quantum radiation standards, Fitzgerald, Ahmed, Bergeron, N.N. Klimov, Schmidt, Tosh, Measurement: Sensors 18, 1000295 (2021); doi.org/10.1117/12.2505898
- Progress towards comparison of quantum and classing vacuum standards, Barker, N.N. Klimov, Tiesinga, Fedchak, Scherschligt, Eckel, Measurement: Sensors 18, 100229 (2021); doi.org/10.1016/j.measen.2021.100229
- Magneto-optical trapping using planar optics, W.R. McGehee, W. Zhu, D.S. Barker, D. Westly, A. Yulaev, N.N. Klimov, A. Agrawal, S. Eckel, V. Aksyuk, J.J. McClelland, New J. of Phys., 23 (2021); doi.org/10.1088/1367-2630/abdce3
- Confinement of an alkaline-earth element in a grating magneto-optical trap, A. Sitaram, P.S. Elgee, G.K. Campbell, N.N. Klimov, S. Eckel, D.S. Barker. Rev. of Scient. Instr. 91, 103202 (2020); doi.org/10.1063/5.0019551
- Nuclear-spin dependent parity violation in optical trapped polyatomic molecules, E.B. Norrgard, D.S. Barker, S.P. Eckel, J.A. Fedchak, N.N. Klimov, J. Scherschligt, Nature Comm. Phys. 2, 77 (2019); doi.org/10.1038/s42005-019-0181-1
- Single-beam slower and magneto-optical trap using a nano-fabricated grating, D.S. Barker, E. Norrgard, N.N. Klimov, J. Fedchak, J. Scherschligt, S. Eckel, Phys. Rev. A 11, 064023 (2019). doi.org/10.1103/PhysRevApplied.11.064023
- Nuclear-spin dependent parity violation in optical trapped polyatomic molecules, E.B. Norrgard, D.S. Barker, S.P. Eckel, J.A. Fedchak, N.N. Klimov, J. Scherschligt, Nature Comm. Phys. 2, 77 (2019). doi.org/10.1038/s42005-019-0181-1
- Review article: Quantum-based vacuum metrology at the National Institute of Standards and Technology, J. Scherschligt, J.A. Fedchak, Z. Ahmed, D.S. Barker, K. Douglass, S. Eckel, E. Hanson, J. Hendricks, N.N. Klimov, T. Purdy, J. Ricker, R. Singh, J. Stone, JVST A 36, 040801 (2018). doi.org/10.1116/1.5033568
- Challenges to miniaturizing cold atom technology for deployable vacuum metrology, S. Eckel, D. Barker, J.A. Fedchak, N.N. Klimov, E.B. Norrgard, J. Scherschligt; C. Makrides, E. Tiesinga, Metrologia 55(5), S182 (2018). doi.org/10.1088/1681-7575/aadbe4
- Towards replacing resistance thermometry with photonic thermometry, N.N. Klimov, T.P. Purdy, Z. Ahmed, Sensors & Actuators A 269, 308-312 (2018). doi.org/10.1016/j.sna.2017.11.055
- Assessing Radiation Hardness of Silicon Photonic Sensors, Z. Ahmed, L. Cumberland, R. Tosh, N.N. Klimov, I.M. Pazos, R.P. Fitzgerald, Scientific Reports 8, 13007 (2018). doi.org/10.1038/s41598-018-31286-9
- Photonic thermometry: upending 100 year-old paradigm in temperature metrology, Z. Ahmed, N.N. Klimov, T. Purdy, T. Herman, K.O. Douglass, R.P. Fitzgerald, SPEI Proceedings. doi.org/10.1117/12.2505898
- Development of a new UHV/XHV pressure standard (Cold Atom Vacuum Standard), J.K. Scherschligt, J.A. Fedchak, D.S. Barker, S.P. Eckel, N.N. Klimov, C. Makrides, E. Tiesinga, Metrologia 54, S125-S132 (2017) (a Special Issue Article). doi.org/10.1088/1681-7575/aa8a7b
- Coulomb drag and counterflow Seebeck coefficient in bilayer-graphene double layers J. Hu, D.B. Newell, J. Tian, N.N. Klimov, D.B. Newell, Y.P. Chen, Nano Energy40, 42-48 (2017). doi.org/10.1016/j.nanoen.2017.07.035
- Towards photonics enabled quantum metrology of temperature, pressure and vacuum, Z. Ahmed, N.N. Klimov, J. Hendricks, Encyclopedia of Nanoscience and Nanotechnology, book chapter (2016).
- Edge-state transport in graphene p-n junctions in the quantum Hall regime, N.N. Klimov, S.T. Le, J. Yan, P. Agnihotri, E. Comfort, J.U. Lee, D.B. Newell, C.A. Richter, Phys. Rev. B: Rapid Communications 92, 241301 (2015). doi.org/10.1103/PhysRevB.92.241301
- On-Chip silicon waveguide Bragg grating photonic temperature sensor, N.N. Klimov, S. Mittal, M. Berger, Z. Ahmed, Optics Letters 40(17), 3934-3936 (2015). doi.org/10.1364/OL.40.003934
- Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene, Z. Deng, N.N. Klimov, S.D. Solares, T. Li, H. Xu, R.J. Cannara, Langmuir 29 (1), 235 (2013). doi.org/10.1021/la304079a
- Electro-mechanical properties of graphene drumheads, N.N. Klimov, S. Jung, S. Zhu, T. Li, C.A. Wright, S.D. Solares, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Science 336, 1557-1561 (2012). doi.org/10.1126/science.1220335
- Microscopic polarization in bilayer graphene, G.M. Rutter, S.Y. Jung, N.N. Klimov, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Nature Physics 7, 649-655 (2011). doi.org/10.1038/nphys1988
- Evolution of microscopic localization in graphene in a magnetic field: from scattering resonances to quantum dots, S.Y. Jung, G.M. Rutter, N.N. Klimov, D.B. Newell, I. Calizo, A.R. Hight-Walker, N.B. Zhitenev, J.A. Stroscio, Nature Physics 7, 245-251 (2011). doi.org/10.1038/nphys1866
- Mechanism for puddle formation in graphene, S. Adam, S.Y. Jung, N.N. Klimov, N.B. Zhitenev, J.A. Stroscio, M.D. Stiles, Phys. Rev. B 84, 235421 (2011). doi.org/10.1103/PhysRevB.84.235421
- Interaction effects in the conductivity of a two-valley electron system in high-mobility Si inversion layers, N.N. Klimov, D.A. Knyazev, O.E. Omel’yanovskii, V.M. Pudalov, H. Kojima, M.E. Gershenson, Phys. Rev. B 78, 195308 (2008), (Editor’s Suggestion). doi.org/10.1103/PhysRevB.78.195308
- Intervalley scattering and weak localization in Si-based two-dimensional structures, A.Yu. Kuntsevich, N.N. Klimov, S.A. Tarasenko, N.S. Averkiev, V.M. Pudalov, H. Kojima, M.E. Gershenson, Phys. Rev. B 75, 195330 (2007). doi.org/10.1103/PhysRevB.75.195330