Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Methane Symmetry Operations - Table 4

Table 4. Transformation matrices DE(P) for (eq. 6)

The transposes of these matrices form a representation of the point group Td of species E. Rows and columns can be labelled by the symbols Ea, Eb, as indicated for the identity matrix. Matrices other than the identity are labelled below by the permutation-inversion operation to which they correspond.

$$\begin{array}{rc}
&E \\
\begin{array}{c}
E_a\\ 
E_b
\end{array} & \left[\begin{array}{rr}
1 &0\\
0 &1
\end{array}\right] \\
 & E_a \,~ E_b \end{array}$$
$$\begin{array}{c}
C_3(111)\\
\left[\begin{array}{rr}
-{1\over2} &+{\sqrt{3\over4}} \\
-\sqrt{3\over4} &-{1\over2}
\end{array}\right] \\
(132)
\end{array}$$
$$\begin{array}{c}
C_3^2(111)\\
\left[\begin{array}{rr}
-{1\over2} &-{\sqrt{3\over4}} \\
+\sqrt{3\over4} &-{1\over2}
\end{array}\right] \\
(123)
\end{array}$$
$$\begin{array}{c}
C_3(-111)\\
\left[\begin{array}{rr}
-{1\over2} &-{\sqrt{3\over4}} \\
+\sqrt{3\over4} &-{1\over2}
\end{array}\right] \\
(134)
\end{array}$$
$$\begin{array}{c}
C_3^2(-111)\\
\left[\begin{array}{rr}
-{1\over2} &+{\sqrt{3\over4}} \\
-\sqrt{3\over4} &-{1\over2}
\end{array}\right] \\
(143)
\end{array}$$
$$\begin{array}{c}
C_3(-1-11)\\
\left[\begin{array}{rr}
-{1\over2} &+{\sqrt{3\over4}} \\
-\sqrt{3\over4} &-{1\over2}
\end{array}\right] \\
(124)\end{array}$$
$$\begin{array}{c}
C_3^2(-1-11)\\
\left[\begin{array}{rr}
-{1\over2} &-{\sqrt{3\over4}} \\
+\sqrt{3\over4} &-{1\over2}
\end{array}\right] \\
(142)\end{array}$$
$$\begin{array}{c}
C_3(1 -11)\\
\left[\begin{array}{rr}
-{1\over2} &-{\sqrt{3\over4}} \\
+\sqrt{3\over4} &-{1\over2}
\end{array}\right] \\
(243)
\end{array}$$
$$\begin{array}{c}
C_3^2(1 -11)\\
\left[\begin{array}{rr}
-{1\over2} &+{\sqrt{3\over4}} \\
-\sqrt{3\over4} &-{1\over2}
\end{array}\right] \\
(234)
\end{array}$$
$$\begin{array}{c}
C_2(x)\\
\left[\begin{array}{rr}
1 &0 \\
0 &1
\end{array}\right] \\
(13)(24)
\end{array}$$
$$\begin{array}{c}
C_2(y)\\
\left[\begin{array}{rr}
1 &0 \\
0 &1
\end{array}\right] \\
(14)(23)
\end{array}$$
$$\begin{array}{c}
C_2(z)\\
\left[\begin{array}{rr}
1 &0 \\
0 &1 
\end{array}\right] \\
(12)(34)\end{array}$$
$$\begin{array}{c}
S_4(x) \\
\left[\begin{array}{rr}
-{1\over2} &-{\sqrt{3\over4}} \\
-\sqrt{3\over4} &+{1\over2}
\end{array}\right] \\
(1432)^*
\end{array}$$
$$\begin{array}{c}
S_4^3(x) \\
\left[\begin{array}{rr}
-{1\over2} &-{\sqrt{3\over4}} \\
-\sqrt{3\over4} &+{1\over2}
\end{array}\right] \\
(1234)^*
\end{array}$$
$$\begin{array}{c}
S_4(y)\\
\left[\begin{array}{rr}
-{1\over2} &+{\sqrt{3\over4}} \\
+\sqrt{3\over4} &+{1\over2}
\end{array}\right] \\
(1342)^*
\end{array}$$
$$\begin{array}{c}
S_4^3(y)\\
\left[\begin{array}{rr}
-{1\over2} &+{\sqrt{3\over4}} \\
+\sqrt{3\over4} &+{1\over2} 
\end{array}\right] \\
(1243)^*
\end{array}$$
$$\begin{array}{c}
S_4(z)\\
\left[\begin{array}{rr}
1 &0\\
0 &-1  
\end{array}\right] \\
(1324)^*
\end{array}$$
$$\begin{array}{c}
S_4^3(z)\\
\left[\begin{array}{rr}
1 &0 \\ 
0 &-1
\end{array}\right] \\
(1423)^*
\end{array}$$
$$\begin{array}{c}
\sigma_d(011) \\
\left[\begin{array}{rr}
-{1\over2} &-{\sqrt{3\over4}} \\
-\sqrt{3\over4} &+{1\over2}
\end{array}\right] \\
(24)^*
\end{array}$$
$$\begin{array}{c}
\sigma_d(0-11) \\
\left[\begin{array}{rr}
-{1\over2} &-{\sqrt{3\over4}} \\
-\sqrt{3\over4} &+{1\over2}
\end{array}\right] \\
(13)^*
\end{array}$$
$$\begin{array}{c}
\sigma_d(101) \\
\left[\begin{array}{rr}
-{1\over2} &+{\sqrt{3\over4}} \\
+\sqrt{3\over4} &+{1\over2}
\end{array}\right] \\
(14)^*
\end{array}$$
$$\begin{array}{c}
\sigma_d(10-1) \\
\left[\begin{array}{rr}
-{1\over2} &+{\sqrt{3\over4}} \\
+\sqrt{3\over4} &+{1\over2}
\end{array}\right] \\
(23)^*
\end{array}$$
$$\begin{array}{c}
\sigma_d(110) \\
\left[\begin{array}{rr}
1 &0 \\
0 &-1 
\end{array}\right] \\
(34)^*
\end{array}$$
$$\begin{array}{c}
\sigma_d(-110) \\
\left[\begin{array}{rr}
1 &0 \\
0 &-1 
\end{array}\right] \\
(12)^*
\end{array}$$

 

Contacts

Created September 20, 2016, Updated November 15, 2019