The transposes of these matrices form a representation of the point group Td of species F2. Rows and columns can be labelled by the symbols F2x, F2y, F2z, as indicated for the identity matrix. Matrices other than the identity are labelled below by the permutation-inversion operation to which they correspond.
$$\begin{array}{rc} &E \\ \begin{array}{c} F_{2x}\\ F_{2y}\\ F_{2z} \end{array} & \left[\begin{array}{ccc} 1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{array}\right] \\ & F_{2x} \,~ F_{2y} \,~ F_{2z} \end{array}$$ |
$$\begin{array}{c} C_3(111)\\ \left[\begin{array}{ccc} 0 &1 &0 \\ 0 &0 &1 \\ 1 &0 &0 \end{array}\right] \\ (132) \end{array}$$ |
$$\begin{array}{c} C_3^2(111)\\ \left[\begin{array}{ccc} 0 &0 &1 \\ 1 &0 &0 \\ 0 &1 &0 \end{array}\right] \\ (123) \end{array}$$ |
$$\begin{array}{c} C_3(-111)\\ \left[\begin{array}{ccc} 0 &0 &-1 \\ -1 &0 &0 \\ 0 &1 &0 \end{array}\right] \\ (134) \end{array}$$ |
$$\begin{array}{c} C_3^2(-111)\\ \left[\begin{array}{ccc} 0 &-1 &0 \\ 0 &0 &1 \\ -1 &0 &0 \end{array}\right] \\ (143) \end{array}$$ |
$$\begin{array}{c} C_3(-1-11)\\ \left[\begin{array}{ccc} 0 &1 &0 \\ 0 &0 &-1 \\ -1 &0 &0 \end{array}\right] \\ (124)\end{array}$$ |
$$\begin{array}{c} C_3^2(-1-11)\\ \left[\begin{array}{ccc} 0 &0 &-1 \\ 1 &0 &0 \\ 0 &-1 &0 \end{array}\right] \\ (142)\end{array}$$ |
$$\begin{array}{c} C_3(1 -11)\\ \left[\begin{array}{ccc} 0 &0 &1 \\ -1 &0 &0 \\ 0 &-1 &0 \end{array}\right] \\ (243) \end{array}$$ |
$$\begin{array}{c} C_3^2(1 -11)\\ \left[\begin{array}{ccc} 0 &-1 &0 \\ 0 &0 &-1 \\ 1 &0 &0 \end{array}\right] \\ (234) \end{array}$$ |
$$\begin{array}{c} C_2(x)\\ \left[\begin{array}{ccc} 1 &0 &0 \\ 0 &-1 &0 \\ 0 &0 &-1 \end{array}\right] \\ (13)(24) \end{array}$$ |
$$\begin{array}{c} C_2(y)\\ \left[\begin{array}{ccc} -1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &-1 \end{array}\right] \\ (14)(23) \end{array}$$ |
$$\begin{array}{c} C_2(z)\\ \left[\begin{array}{ccc} -1 &0 &0 \\ 0 &-1 &0 \\ 0 &0 &1 \end{array}\right] \\ (12)(34)\end{array}$$ |
$$\begin{array}{c} S_4(x) \\ \left[\begin{array}{ccc} -1 &0 &0 \\ 0 &0 &1 \\ 0 &-1 &0 \end{array}\right] \\ (1432)^* \end{array}$$ |
$$\begin{array}{c} S_4^3(x) \\ \left[\begin{array}{ccc} -1 &0 &0 \\ 0 &0 &-1 \\ 0 &1 &0 \end{array}\right] \\ (1234)^* \end{array}$$ |
$$\begin{array}{c} S_4(y)\\ \left[\begin{array}{ccc} 0 &0 &-1 \\ 0 &-1 &0\\ 1 &0 &0 \end{array}\right] \\ (1342)^* \end{array}$$ |
$$\begin{array}{c} S_4^3(y)\\ \left[\begin{array}{ccc} 0 &0 &1 \\ 0 &-1 &0\\ -1 &0 &0 \end{array}\right] \\ (1243)^* \end{array}$$ |
$$\begin{array}{c} S_4(z)\\ \left[\begin{array}{ccc} 0 &1 &0\\ -1 &0 &0\\ 0 &0 &-1 \end{array}\right] \\ (1324)^* \end{array}$$ |
$$\begin{array}{c} S_4^3(z)\\ \left[\begin{array}{ccc} 0 &-1 &0\\ 1 &0 &0 \\ 0 &0 &-1 \end{array}\right] \\ (1423)^* \end{array}$$ |
$$\begin{array}{c} \sigma_d(011) \\ \left[\begin{array}{ccc} 1 &0 &0 \\ 0 &0 &-1 \\ 0 &-1 &0 \end{array}\right] \\ (24)^* \end{array}$$ |
$$\begin{array}{c} \sigma_d(0-11) \\ \left[\begin{array}{ccc} 1 &0 &0 \\ 0 &0 &1 \\ 0 &1 &0 \end{array}\right] \\ (13)^* \end{array}$$ |
$$\begin{array}{c} \sigma_d(101) \\ \left[\begin{array}{ccc} 0 &0 &-1 \\ 0 &1 &0\\ -1 &0 &0 \end{array}\right] \\ (14)^* \end{array}$$ |
$$\begin{array}{c} \sigma_d(10-1) \\ \left[\begin{array}{ccc} 0 &0 &1 \\ 0 &1 &0\\ 1 &0 &0 \end{array}\right] \\ (23)^* \end{array}$$ |
$$\begin{array}{c} \sigma_d(110) \\ \left[\begin{array}{ccc} 0 &-1 &0\\ -1 &0 &0 \\ 0 &0 &1 \end{array}\right] \\ (34)^* \end{array}$$ |
$$\begin{array}{c} \sigma_d(-110) \\ \left[\begin{array}{ccc} 0 &1 &0\\ 1 &0 &0 \\ 0 &0 &1 \end{array}\right] \\ (12)^* \end{array}$$ |