The National Institute of Standards and Technology (NIST) is working to advance measurement capabilities needed to study the world’s climates. Climate Science seeks to understand the relation between the physical and chemical properties of oceanic, atmospheric, and geographic masses with long term changes in climates. The Chemical Sciences Division is developing advanced metrology and certified reference materials to provide accurate and reproducible measurements of greenhouse gases (carbon dioxide, methane, nitrous oxide), halocarbons, aerosols, particulate matter, and chemical oceanographic parameters (seawater pH, total alkalinity, and dissolved inorganic carbon) – factors that influence and reflect climate change. Robust data are essential for the computational models used in assessing trends in climate change that can inform public policy decisions.
This program encompasses multifaceted efforts to advance the metrology of climate science. Projects include:
These activities provide technologies, instruments, standards, data, and informatics tools to support the Nation’s needs to identity and quantify the amount of GHGs and reactivity of aerosols in Earth’s atmosphere, as well as the state of the Earth’s oceans with respect to climate change. By advancing chemical metrology and data analysis tools, these activities provide critically needed aid to policy makers in areas such as environmental research, assessment and mitigation of climate change, and policy development.
1. Orkin, V. L., Khamaganov, V. G., and Kurylo, M. J., "Experimental kinetic study of the reactions between OH radicals and three 2-butenes over the temperature range 220-370 K and pressure range 0.67-40 kPa (5-300 Torr)," International Journal of Chemical Kinetics, 55, 221-237 (2023).
2. Clegg, S. L., Humphreys, M. P., Waters, J. F., Turner, D. R., and Dickson, A. G., "Chemical speciation models based upon the Pitzer activity coefficient equations, including the propagation of uncertainties. II. Tris buffers in artificial seawater at 25C, and an assessment of the seawater Total pH scale," Marine Chemistry, 244, (2022).
3. Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E. V., Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R. V., Tan, Y., Wcislo, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Coustenis, A., Drouin, B. J., Flaud, J. M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Mlawer, E. J., Nikitin, A. V., Perevalov, V. I., Rotger, M., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Adkins, E. M., Baker, A., Barbe, A., Cane, E., Csaszar, A. G., Dudaryonok, A., Egorov, O., Fleisher, A. J., Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J. J., Hartmann, J. M., Horneman, V. M., Huang, X., Karman, T., Karns, J., Kassi, S., Kleiner, I., Kofman, V., Kwabia-Tchana, F., Lavrentieva, N. N., Lee, T. J., Long, D. A., Lukashevskaya, A. A., Lyulin, O. M., Makhnev, V. Y., Matt, W., Massie, S. T., Melosso, M., Mikhailenko, S. N., Mondelain, D., Muller, H. S. P., Naumenko, O. V., Perrin, A., Polyansky, O. L., Raddaoui, E., Raston, P. L., Reed, Z. D., Rey, M., Richard, C., Tobias, R., Sadiek, I., Schwenke, D. W., Starikova, E., Sung, K., Tamassia, F., Tashkun, S. A., Vander Auwera, J., Vasilenko, I. A., Vigasin, A. A., Villanueva, G. L., Vispoel, B., Wagner, G., Yachmenev, A., and Yurchenko, S. N., "The HITRAN2020 molecular spectroscopic database," Journal of Quantitative Spectroscopy & Radiative Transfer, 277, (2022).
4. Guallart, E. F., Fajar, N. M., Garcia-Ibanez, M. I., Castano-Carrera, M., Santiago-Domenech, R., Hassoun, A. E., Perez, F. F., Easley, R. A., and Alvarez, M., "Spectrophotometric Measurement of Carbonate Ion in Seawater over a Decade: Dealing with Inconsistencies," Environmental Science & Technology, 56, 7381-7395 (2022).
5. Humphreys, M. P., Waters, J. F., Turner, D. R., Dickson, A. G., and Clegg, S. L., "Chemical speciation models based upon the Pitzer activity coefficient equations, including the propagation of uncertainties: Artificial seawater from 0 to 45C," Marine Chemistry, 244, (2022).
6. Lisak, D., Charczun, D., Nishiyama, A., Voumard, T., Wildi, T., Kowzan, G., Brasch, V., Herr, T., Fleisher, A. J., Hodges, J. T., Ciurylo, R., Cygan, A., and Maslowski, P., "Dual-comb cavity ring-down spectroscopy," Scientific Reports, 12, (2022).
7. Long, D. A., Adkins, E. M., Mendonca, J., Roche, S., and Hodges, J. T., "The effects of advanced spectral line shapes on atmospheric carbon dioxide retrievals," Journal of Quantitative Spectroscopy & Radiative Transfer, 291, (2022).
8. Bailey, D. M., Zhao, G., and Fleisher, A. J., "Precision Spectroscopy of Nitrous Oxide Isotopocules with a Cross-Dispersed Spectrometer and a Mid-Infrared Frequency Comb," Analytical Chemistry, 92, 13759-13766 (2020).
9. Li, X. Y., Garcia-Ibanez, M. I., Carter, B. R., Chen, B. S., Li, Q., Easley, R. A., and Cai, W. J., "Purified meta-Cresol Purple dye perturbation: How it influences spectrophotometric pH measurements," Marine Chemistry, 225, (2020).
10. Yao, Q., Asa-Awuku, A., Zangmeister, C. D., and Radney, J. G., "Comparison of three essential sub-micrometer aerosol measurements: Mass, size and shape," Aerosol Science and Technology, 54, 1197-1209 (2020).
11. Brewer, P. J., Kim, J. S., Lee, S., Tarasova, O. A., Viallon, J., Flores, E., Wielgosz, R. I., Shimosaka, T., Assonov, S., Allison, C. E., van der Veen, A. M. H., Hall, B., Crotwell, A. M., Rhoderick, G. C., Hodges, J. T., Mahn, J., Zellweger, C., Moossen, H., Ebert, V., and Griffith, D. W. T., "Advances in reference materials and measurement techniques for greenhouse gas atmospheric observations," Metrologia, 56, (2019).
12. Plusquellic, D. F., Wagner, G. A., Briggman, K., Fleisher, A. J., Long, D. A., and Hodges, J. T., "Simultaneous DIAL, IPDA and point sensor measurements of the greenhouse gases, CO2 and H2O," 2019 Conference on Lasers and Electro-Optics (Cleo), (2019).
13. Zangmeister, C. D., Grimes, C. D., Dickerson, R. R., and Radney, J. G., "Characterization and demonstration of a black carbon aerosol mimic for instrument evaluation," Aerosol Science and Technology, 53, 1322-1333 (2019).
14. Rhoderick, G. C., Kelley, M. E., Miller, W. R., Norris, J. E., Carney, J., Gameson, L., Cecelsld, C. E., Harris, K. J., Goodman, C. A., Srivastava, A., and Hodges, J. T., "NIST Standards for Measurement, Instrument Calibration, and Quantification of Gaseous Atmospheric Compounds," Analytical Chemistry, 90, 4711-4718 (2018).
15. Zangmeister, C. D., You, R., Lunny, E. M., Jacobson, A. E., Okumura, M., Zachariah, M. R., and Radney, J. G., "Measured in-situ mass absorption spectra for nine forms of highly-absorbing carbonaceous aerosol," Carbon, 136, 85-93 (2018).
16. Zangmeister, C. D., Radney, J. G., "Absorption Spectroscopy of Black and Brown Carbon Aerosol,". In: Multiphase Environmental Chemistry in the Atmosphere. ACS Publications, pp. 275-297 (2018).
17. Bailey, D. M., Adkins, E. M., and Miller, J. H., "An open-path tunable diode laser absorption spectrometer for detection of carbon dioxide at the Bonanza Creek Long-Term Ecological Research Site near Fairbanks, Alaska," Applied Physics B, 123, 1-10 (2017).
18. Radney, J. G., You, R., Zachariah, M. R., and Zangmeister, C. D., "Direct In Situ Mass Specific Absorption Spectra of Biomass Burning Particles Generated from Smoldering Hard and Softwoods," Environmental Science & Technology, 51, 5622-5629 (2017).
19. Radney, J. G. and Zangmeister, C. D., "Light source effects on aerosol photoacoustic spectroscopy measurements," Journal of Quantitative Spectroscopy and Radiative Transfer, 187, 145-149 (2017).
20. Zangmeister, C., "Measured absorption spectra of aerosolized carbonaceous species and their influence on climate forcing," Abstracts of Papers of the American Chemical Society, 254, (2017).
21. Allison, T. C., "Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential," Journal of Physical Chemistry B, 120, 1854-1863 (2016).
22. Betowski, D., Bevington, C., and Allison, T. C., "Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential," Environmental Science & Technology, 50, 790-797 (2016).
23. Radney, J. G. and Zangmeister, C. D., "Practical limitations of aerosol separation by a tandem differential mobility analyzer-aerosol particle mass analyzer," Aerosol Science and Technology, 50, 160-172 (2016).
24. Rhoderick, G. C., Kitzis, D. R., Kelley, M. E., Miller, W. R., Hall, B. D., Dlugokencky, E. J., Tans, P. P., Possolo, A., and Carney, J., "Development of a Northern Continental Air Standard Reference Material," Analytical Chemistry, 88, 3376-3385 (2016).
25. Lin, H., Reed, Z. D., Sironneau, V. T., and Hodges, J. T., "Cavity ring-down spectrometer for high-fidelity molecular absorption measurements," Journal of Quantitative Spectroscopy & Radiative Transfer, 161, 11-20 (2015).
26. Long, D. A., Wojtewicz, S., Miller, C. E., and Hodges, J. T., "Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)<-(00001) near-infrared carbon dioxide band," Journal of Quantitative Spectroscopy & Radiative Transfer, 161, 35-40 (2015).
27. Orkin, V. L., Khamaganov, V. G., and Guschin, A. G., "Photochemical Properties of Hydrofluoroethers CH3OCHF2, CH3OCF3, and CHF2OCH2CF3: Reactivity toward OH, IR Absorption Cross Sections, Atmospheric Lifetimes, and Global Warming Potentials," Journal of Physical Chemistry A, 118, 10770-10777 (2014).
28. Orkin, V. L., Martynova, L. E., and Kurylo, M. J., "Photochemical Properties of trans-1-Chloro-3,3,3-trifluoropropene (trans-CHCl=CHCF3): OH Reaction Rate Constant, UV and IR Absorption Spectra, Global Warming Potential, and Ozone Depletion Potential," Journal of Physical Chemistry A, 118, 5263-5271 (2014).
29. Radney, J. G., You, R. A., Ma, X. F., Conny, J. M., Zachariah, M. R., Hodges, J. T., and Zangmeister, C. D., "Dependence of Soot Optical Properties on Particle Morphology: Measurements and Model Comparisons," Environmental Science & Technology, 48, 3169-3176 (2014).
30. Rhoderick, G. C., Duewer, D. L., Apel, E., Baldan, A., Hall, B., Harling, A., Helmig, D., Heo, G. S., Hueber, J., Kim, M. E., Kim, Y. D., Miller, B., Montzka, S., and Riemer, D., "International Comparison of a Hydrocarbon Gas Standard at the Picomol per Mol Level," Analytical Chemistry, 86, 2580-2589 (2014).
31. Long, D. A. and Hodges, J. T., "On spectroscopic models of the O-2 A-band and their impact upon atmospheric retrievals," Journal of Geophysical Research-Atmospheres, 117, (2012).
32. Long, D. A., Cygan, A., van Zee, R. D., Okumura, M., Miller, C. E., Lisak, D., and Hodges, J. T., "Frequency-stabilized cavity ring-down spectroscopy," Chemical Physics Letters, 536, 1-8 (2012).
33. Rhoderick, G. C., Carney, J., and Guenther, F. R., "NIST Gravimetrically Prepared Atmospheric Level Methane in Dry Air Standards Suite," Analytical Chemistry, 84, 3802-3810 (2012).
34. Patten, K. O., Khamaganov, V. G., Orkin, V. L., Baughcum, S. L., and Wuebbles, D. J., "OH reaction rate constant, IR absorption spectrum, ozone depletion potentials and global warming potentials of 2-bromo-3,3,3-trifluoropropene," Journal of Geophysical Research-Atmospheres, 116, (2011).
35. Rhoderick, G. C., Duewer, D. L., Ning, L., and DeSirant, K., "Hydrocarbon Gas Standards at the pmol/mol Level to Support Ambient Atmospheric Measurements," Analytical Chemistry, 82, 859-867 (2010).