The widespread use of robots in flexible factories (i.e., factory environments subject to high product turnover, short production runs, and high variability in equipment configurations) is limited by the robots’ inability to safely collaborate with one another and with human labor. The robots’ incapacity to coordinate, communicate, and understand their actions, roles, and task statuses thus decreases the robots’ usefulness in applications where tasks cannot be completed by a single robot. This limitation is driven by both the absence of tools and protocols needed for describing collaborative functions, and the complete lack of metrics for assessing how we expect robots to work with other robots and with humans. The Performance of Collaborative Robot Systems project will provide the methods, protocols, and metrics necessary to evaluate the collaborative capabilities of robot systems, and will use a task-driven decomposition of manufacturing processes to assess and assure the safety and effectiveness of human-robot and robot-robot collaborative teams toward the manufacturing performance objectives. This collection of methods, protocols, and metrics will enable end-users to maximize the effectiveness and efficiency of integrating collaborative robots into their production processes, impacting both large-scale companies designing and repurposing fully autonomous manufacturing workflows, and smaller companies looking to begin automating existing processes performed largely by manual labor.
Objective: Deliver a suite of test methods, protocols, and information models to assess and assure that robots working collaboratively in human-robot and robot-robot teams will complete their assigned tasks safely and correctly while meeting their assembly performance objectives.
Technical Idea: To achieve the specified objective, the Performance of Collaborative Robot Systems project will focus on developing a collective metrology suite consisting of test methods, metrics, systems models, software libraries, and algorithms to evaluate the robots’ capabilities that contribute to the successful completion of collaborative tasks. This collective metrology suite will enable end users of collaborative robot technologies to:
Research Plan: This research plan focuses on five principal capabilities of robot systems that collectively contribute to collaborative teams: 1) temporal and spatial coordination of robot, 2) task role and responsibility decomposition, allocation, and comprehension, 3) developing protocols for robot-robot and human-robot collaboration communications, 4) validating the cognitive awareness of collaborative robot systems, and 5) assessing and assuring the collective performance of teams containing collaborative robot systems. Each of these foci builds upon the capabilities defined or developed in its predecessor. Collectively, they will comprise a total suite of test methods, metrics, and protocols to assess the collaborative performance of robot systems. For each phase of development, the test methods, metrics, and protocols will be evaluated using the NIST collaborative robotics testbed.
These protocols will be developed based on an assessment of the needs, hardware and software mechanisms, and capabilities of robots and humans to formulate and exchange information with one another. Metrics for assessing effectiveness of communications in human-robot interactions will also be compiled, and will provide feedback for manufacturers and systems integrators with subjective and objective feedback regarding operator effort and situational awareness, as well as the impacts the human-machine interfaces have on the manufacturing processes and human-robot team dynamics.