Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 3124

Quasi-Deterministic Channel Propagation Model for Human Sensing: Gesture Recognition Use Case

July 9, 2025
Author(s)
Jack Chuang, Raied Caromi, Jelena Senic, Samuel Berweger, Neeraj Varshney, Jian Wang, Anuraag Bodi, Camillo Gentile, Nada Golmie
We describe a quasi-determinstic channel propagation model for human gesture recognition reduced from real-time measurements with our context aware channel sounder, considering four human subjects and 20 distinct body motions, for a total of 120,000

Digital-Twin-Assisted Clustering of Radio-Frequency Multipath Components

June 26, 2025
Author(s)
Anuraag Bodi, Jihoon Bang, Neeraj Varshney, Samuel Berweger, Chiehping Lai, Jelena Senic, Jack Chuang, Camillo Gentile
Clustering radio-frequency (RF) multipath components (MPCs) fosters compact channel models by capturing the geometry of the scattering environment, yet "blind" methods based solely on RF data struggle to associate MPCs with individual scatterers. We

Measuring the RCS of Multipoint-Scattering Targets in JCAS Channel Sounding

May 25, 2025
Author(s)
Camillo Gentile, Jack Chuang, Steve Blandino, Jelena Senic, Jihoon Bang, Samuel Berweger
This paper presents a methodology for measuring the radar cross-section (RCS) of a target that scatters power from multiple points on its surface, in the context of joint communication and sensing (JCAS). By leveraging the fine resolution of millimeter

Measuring Out-of-Plane Permittivity of Thin Films to Millimeter Wave Frequencies

April 22, 2025
Author(s)
Florian Bergmann, Meagan Papac, Benjamin Jamroz, Nicholas Jungwirth, Bryan Bosworth, Anna Osella, Tomasz Karpisz, Lucas Enright, Eric Marksz, Angela Stelson, Christian Long, Nathan Orloff, Robert Jones
Modern microchips utilize multilayer stack-ups with many interstitial layers of dielectrics. Optimizing device performance and maximizing yield requires precise measurements of the out-of-plane permittivity of these dielectric layers. At the same time

Glass microwave microfluidic devices for broadband characterization of diverse fluids

November 15, 2024
Author(s)
Jacob Pawlik, Tomasz Karpisz, Yasaman Kazemipour, Nicholas Derimow, Sarah Evans, Bryan Bosworth, Christian Long, Nathan Orloff, James Booth, Angela Stelson
We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 10 GHz with relatively low uncertainty. Conventional microwave microfluidic devices use polymer-based microfluidic

CHARACTERIZATION OF MICROWAVE BLACKBODY WITH MONOSTATIC MEASUREMENT

September 5, 2024
Author(s)
Dazhen Gu, Jonah Smith, Adam Whitney, Omar Khatib, Natalie Rozman, Amanda Gregg, Willie Padilla, William Deal, Steven Reising
This paper describes a characterization method for measuring the reflectivity of blackbodies used as calibration devices in spaceborne instruments. The fundamental measurement principle is based on the scattering matrix theory. A monostatic apparatus has

Progress in the Kibble Dynamic Force Reference

August 30, 2024
Author(s)
Jared Strait, Akobuije Chijioke
We present progress in the development of a dynamic force reference instrument (KDFR) based on the Kibble principle. We describe the operating principle and design of the KDFR and discuss how the design for alternating current (AC) force measurements

Measurement-Based Prediction of mmWave Channel Parameters Using Deep Learning and Point Cloud

August 2, 2024
Author(s)
Anuraag Bodi, Raied Caromi, Jian Wang, Jelena Senic, Camillo Gentile, Hang Mi, Bo Ai, Ruisi He
Millimeter-wave (MmWave) channel characteristics are quite different from sub-6 GHz frequency bands. The major differences include higher path loss and sparser multipath components (MPCs), resulting in more significant time-varying characteristics in

Characterizing the Broadband RF Permittivity of 3D-Integrated Layers in a Glass Wafer Stack from 100 MHz to 30 GHz

July 30, 2024
Author(s)
Jacob Pawlik, Tomasz Karpisz, Nicholas Derimow, Sarah Evans, Jim Booth, Nate Orloff, Chris Long, Angela Stelson
We present a method for accurately determining the permittivity of dielectric materials in 3D integrated structures at broadband RF frequencies. With applications of microwave and millimeter-wave electronics on the rise, reliable methods for measuring the

On-Wafer Calibration Comparisons of Multiline TRL with Platinum and Gold Conductors

July 30, 2024
Author(s)
Tomasz Karpisz, Jacob Pawlik, Johannes Hoffmann, Sarah Evans, Christian Long, Nathan Orloff, James Booth, Angela Stelson
On-wafer calibrations are critical for measurements of embedded devices at the correct reference planes. A major challenge in on-wafer calibrations is the development of accurate calibrations that cover a frequency range from MHz to THz. Another challenge

Measuring the permittivity of fused silica with planar on-wafer structures up to 325 GHz

February 12, 2024
Author(s)
Nicholas Jungwirth, Florian Bergmann, Bryan Bosworth, Jerome Cheron, Christian Long, Nathan Orloff
Fused silica has become an interesting alternative to silicon for millimeter-wave (mmWave) applications. Unfortunately, there are few reports on the measurement of fused silica's permittivity above 110 GHz using electrical rather than optical methods

A Measurement-Referenced Error Vector Magnitude for Counterfeit Cellular Device Detection

October 17, 2023
Author(s)
Ameya Ramadurgakar, Kate Remley, Dylan Williams, Jake Rezac, MELINDA PIKET-MAY, Rob Horansky
Standard formulations of error vector magnitude compare a wireless device's symbol constellation to an ideal reference constellation. In this work, we utilize the residual error vector magnitude, which uses measurements of a wireless device to define a

NIST's Antenna Gain and Polarization Calibration Service Reinstatement

October 9, 2023
Author(s)
Josh Gordon, Benjamin Moser
After a five-year renovation of the National Institute of Standards and Technology (NIST) Boulder, CO, antenna measurement facility, the Antenna On-Axis Gain and Polarization Measurements Service SKU63100S was reinstated with the Bureau International des

Synthetic Aperture RF Reception using Rydberg Atoms

August 2, 2023
Author(s)
Nik Prajapati, Aly Artusio-Glimpse, Matt Simons, Samuel Berweger, Drew Rotunno, Maitreyi Jayaseelan, Kaleb Campbell, Christopher L. Holloway
Rydberg atoms show great promise for use as self-calibrated electric field sensors for a broad range of frequencies. Their response is traceable to the international system of units making them a valuable tool for a variety of applications including

Testing dielectric slab mode excitation, non-rectangular conductor profiles and edge roughness as sources of additional loss in mmWave transmission lines

July 28, 2023
Author(s)
Florian Bergmann, Nicholas Jungwirth, Bryan Bosworth, Jason Killgore, Eric Marksz, Tomasz Karpisz, Meagan Papac, Anna Osella, Lucas Enright, Christian Long, Nathan Orloff
Losses in mmWave transmission lines often exceed first-principles predictions based on measurements of dc resistivity and the nominal conductor geometry. In our case, we observed an additional distributed resistance of coplanar waveguides on DyScO3

Microwave Characterization of Parylene C Dielectric and Barrier Properties

June 29, 2023
Author(s)
Nikolas Dale Barrera, Jacob Pawlik, Eugene Yoon, James Booth, Christian Long, Nathan Orloff, Ellis Meng, Angela Stelson
Parylene C thin films are commonly used as a passivation layer, protective coating, or substrate material in implantable medical devices. However, fluid or vapor may permeate through Parylene C films over time through defects, film edges, or bulk diffusion
Displaying 1 - 25 of 3124
Was this page helpful?