Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 26 - 50 of 699

Few-electron highly charged muonic Ar atoms verified by electronic K xrays

July 10, 2024
Author(s)
Takuma Okumura, Toshiyuki Azuma, Douglas Bennett, W. Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Yuto Ichinohe, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Daiji Kato, Miho Katsuragawa, Naritoshi Kawamura, Yasushi Kino, Nao Kominato, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Shinji Okada, Kenichi Okutsu, Nancy Paul, Carl D. Reintsema, Toshiki Sato, Dan Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Shinichiro Takeda, Soshi Takeshita, Motonobu Tampo, Hideyuki Tatsuno, Tong Xiao-Min, Joel Ullom, Shin Watanabe, Shinya Yamada, Takuma Yamashita
Electronic K x rays emitted by muonic Ar atoms in the gas phase were observed using a superconducting transition-edge-sensor microcalorimeter. The high-precision energy spectra provided a clear signature of the presence of muonic atoms accompanied by a few

High resolution X-ray Spectra of the Time Evolution of Emission from Metastable Electronic States of Highly Charged Ni-like Ions

June 25, 2024
Author(s)
Timothy Burke, Endre Takacs, Dipti Dipti, Adam Hosier, Galen O'Neil, Hunter Staiger, Joseph N. Tan, Aung S. Naing, Joan Marler, Yuri Ralchenko
Metastable levels of highly charged ions that can only decay via highly forbidden transitions can have a significant effect on the properties of high temperature plasmas. For example the highly forbidden 3d10 J=0 - 3d94s ( 5 2 , 1 2 )J=3 magnetic octupole

Laser Offset Stabilization with Chip-Scale Atomic Diffractive Elements

June 7, 2024
Author(s)
Heleni Krelman, Ori Nefesh, Kfir Levi, Douglas Bopp, Songbai Kang, Liron Stern, John Kitching
Achieving precise and adjustable control over laser frequency is an essential requirement in numerous applications such as precision spectroscopy, quantum control, and sensing. In many of such applications it is desired to stabilize a laser with a variable

Quantum metrology algorithms for dark matter searches with clocks

June 7, 2024
Author(s)
Muhammad Zaheer, Naleli Matjelo, David Hume, Marianna Safronova, David Leibrandt
Quantum metrology involves improving the sensitivity of a quantum sensor to a signal while circumventing sensitivity to noise using algorithms from quantum information science. Atomic clocks are among the most sensitive quantum sensors, with recent

Dynamical Formation of Prethermal BEC in Floquet Engineered Lattice

June 3, 2024
Author(s)
James Maslek, Carlos Alberto Bracamontes Palma, James Porto
We experimentally realise an effective Hamiltonian with a continuously adjustable staggered gauge field for weakly interacting bosons in an optical lattice. Periodic driving realises a staggered $\Phi$-flux model, where $\Phi$ can be continuously tuned

An atomic boson sampler

May 8, 2024
Author(s)
Aaron Young, Shawn Geller, William Eckner, Nathan Schine, Scott Glancy, Emanuel Knill, Adam Kaufman

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Andrew Rotunno, Aly Artusio-Glimpse, Abrar Sheikh, Eric Norrgard, Christopher L. Holloway, Stephen Eckel
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, Matt Simons, Abrar Sheikh, Andrew Rotunno, Eric Norrgard, Stephen Eckel, Christopher L. Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

Single-electron states of phosphorus-atom arrays in silicon

May 8, 2024
Author(s)
Maicol Ochoa, Keyi Liu, Michal Zielinski, Garnett W. Bryant
We characterize the single-electron energies and the wavefunction structure of arrays with two, three, and four phosphorus atoms in silicon by implementing atomistic tight-binding calculations and analyzing wavefunction overlaps to identify the single

Independent Rydberg atom sensing using a dual-ladder scheme

May 2, 2024
Author(s)
Samuel Berweger, Alexandra Artusio-Glimpse, Nikunjkumar Prajapati, Andrew Rotunno, Noah Schlossberger, Dangka Shylla, kaitlin moore, Matthew Simons, Christopher Holloway
Rydberg atom-based electric field sensing can provide all-optical readout of radio frequency fields in a dielectric environment. However, because a single set of optical fields is typically used to prepare the Rydberg state and read out its response to RF

Quantum Scattering of Icosahedron Fullerene C_60} with Noble-Gas Atoms

April 22, 2024
Author(s)
Eite Tiesinga, Jacek Klos, Svetlana Kotochigova
There exist multiple ways to cool neutral molecules. A front runner is the technique of buffer gas cooling, where momentum-changing collisions with abundant cold noble-gas atoms cool the molecules. This approach can, in principle, produce the most diverse

Benford's law in atomic spectra and opacity databases

April 21, 2024
Author(s)
Yuri Ralchenko, Jean-Christophe Pain
The intriguing law of anomalous numbers, also named Benford's law, states that the significant digits of data follow a logarithmic distribution favoring the smallest values. In this work, we test the compliance with this law of the atomic databases

Laser cooling 88Sr to microkelvin temperature with an integrated-photonics system

April 19, 2024
Author(s)
Andrew Ferdinand, Zheng Luo, Sindhu Jammi, Zachary Newman, Grisha Spektor, Okan Koksal, Akash Rakholia, Daniel Sheredy, Parth Patel, Travis Briles, Wenqi Zhu, Martin Machai Boyd, Amit Agrawal, Scott Papp
We report on experiments generating a magneto-optical trap (MOT) of 88-strontium (88Sr) atoms at microkelvin temperature, using integrated-photonics devices. With metasurface optics integrated on a fused-silica substrate, we generate six-beam, circularly p

Experimental speedup of quantum dynamics through squeezing

April 17, 2024
Author(s)
Shaun Burd, Hannah Knaack, Raghavendra Srinivas, Christian Arenz, Alejandra Collopy, Laurent Stephenson, Andrew C. Wilson, David Wineland, Dietrich Leibfried, John J. Bollinger, David Allcock, Daniel Slichter
We show experimentally that a broad class of interactions involving quantum harmonic oscillators can be made stronger (amplified) using a unitary squeezing protocol. While our demonstration uses the motional and spin states of a single trapped $^25}$Mg$^+}

Collision-resolved pressure sensing

April 11, 2024
Author(s)
Daniel Carney, Daniel Barker, Thomas W. LeBrun, David Moore, Jacob Taylor
Heat and pressure are ultimately transmitted via quantized degrees of freedom, like gas particles and phonons. While a continuous Brownian description of these noise sources is adequate to model measurements with relatively long integration times
Displaying 26 - 50 of 699