Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 326 - 350 of 870

Fast optimization algorithms and the cosmological constant

November 1, 2017
Author(s)
Stephen P. Jordan, Ning Bao, Brad Lackey, Raphael Bousso
Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of an NP-hard problem. The number of elementary operations (quantum gates) needed to solve this problem by

Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices

October 12, 2017
Author(s)
Marcelo I. Davanco, Liu Jin, Luca Sapienza, Chen-Zhao Zhang, Jose Vinicius De Miranda Cardoso, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Liu Liu, Kartik A. Srinivasan
Photonic integration is establishing itself as an enabling technology for photonic quantum science, offering considerably greater scalability, stability, and functionality than traditional bulk optics. Here, we develop a scalable, heterogeneous III-V /

Phase Retrieval Using Unitary 2-Designs

September 4, 2017
Author(s)
Yi-Kai Liu, Shelby Kimmel
We consider a variant of the phase retrieval problem, where vectors are replaced by unitary matrices, i.e., the unknown signal is a unitary matrix U, and the measurements consist of squared inner products |Tr(C*U)|^2 with unitary matrices C that are chosen

Threshold Dynamics of a Semiconductor Single Atom Maser

August 31, 2017
Author(s)
Michael Gullans, Jacob M. Taylor, Yinyiu Liu, J. Stehlik, Christopher Eichler, X Mi, T Hartke, Jason Petta
We demonstrate a single-atom maser consisting of a semiconductor double quantum dot (DQD) that is embedded in a high quality factor microwave cavity. A finite bias drives the DQD out of equilibrium resulting in sequential single electron tunneling and

Towards integrated superconducting detectors on lithium niobate waveguides

August 29, 2017
Author(s)
Jan P. Hoepker, Moritz Bartnick, Evan Meyer-Scott, Frederik Thiele, Stephan Krapick, Nicola Montaut, Matteo Santandrea, Harald Herrmann, Sebastian Lengeling, Raimund Ricken, Victor Quiring, Torsten Meier, Adriana Lita, Varun Verma, Thomas Gerrits, Sae Woo Nam, Christine Silberhorn, Tim J. Bartley
Superconducting detectors are now well-established tools for low-light optics, and in particular quantum optics, boasting high-efficiency, fast response and low noise. Similarly, lithium niobate is an important platform for integrated optics given its

Fano fluctuations in superconducting nanowire single-photon detectors

August 9, 2017
Author(s)
Alex Kozorezov, Colin Lambert, Francesco Marsili, Marty Stevens, Varun Verma, Matthew Shaw, Richard Mirin
Because of their universal nature, Fano fluctuations are expected to play an important role in the behavior of superconducting nanowire single-photon detectors (SNSPDs). Taking into account Fano fluctuations we predict that the photon counting rate as a

Simultaneous readout of 128 X-ray and Gamma-ray Transition-edge Microcalorimeters using Microwave SQUID Multiplexing

August 8, 2017
Author(s)
John Mates, Dan Becker, Douglas Bennett, Johnathon Gard, James P. Hays-Wehle, Joseph Fowler, Gene C. Hilton, Carl D. Reintsema, Dan Schmidt, Daniel Swetz, Leila R. Vale, Joel Ullom
The number of elements in most cryogenic sensor arrays is limited by the technology available to multiplex signals from the array into a smaller number of wires and readout amplifiers. The largest demonstrated arrays of transition-edge sensor (TES)

Narrowband Optomechanical Refrigeration of a Chiral Bath

August 7, 2017
Author(s)
Jacob M. Taylor, Kim Seunghwi, Xu Xunnong, Gaurav Bahl
The transport of sound and heat, in the form of phonons, is fundamentally limited by disorder-induced scattering. In electronic and optical settings, introduction of chiral transport - in which carriers have unidirectional propagation - provides robustness

Noise Refocusing in a Five-blade Neutron Interferometer

August 1, 2017
Author(s)
Michael G. Huber, Muhammad D. Arif, Dimitry A. Pushin, David G. Cory, Dusan Sarenac, Joachim Nsofini, Kamyar Ghofrani
We provide a quantum information description of a proposed five-blade neutron interferometer geometry and show that it is robust against low-frequency mechanical vibrations and dephasing due to the dynamical phase. The extent to which the dynamical phase

Demonstration of efficient nonreciprocity in a microwave optomechanical circuit

July 6, 2017
Author(s)
Gabriel A. Peterson, Florent Q. Lecocq, Katarina Cicak, Raymond W. Simmonds, Jose A. Aumentado, John D. Teufel
Abstract The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from large reverse isolation, a nonreciprocal device suitable for

Identification of nonclassical properties of light with multiplexing layouts

July 6, 2017
Author(s)
Jan Sperling, Andreas Eckstein, W.R. Clements, Meritt Moore, Jelmer Renema, Steven Kolthammer, Sae Woo Nam, Adriana Lita, Thomas Gerrits, Ian Walmsley, G.S. Agarwal, Wolfgang Vogel
In our work, we introduce and apply a detector-independent method to uncover nonclassicality. In this contribution, we extend those techniques and give more details on the performed nalysis. We derive the general structure of the positive-operator-valued

Optical Radiation from Integer Quantum Hall States in Dirac Materials

June 30, 2017
Author(s)
Michael Gullans, Jacob M. Taylor, Mohammad Hafezi
Quantum Hall systems exhibit topologically protected edge states, which can have a macroscopic spatial extent. Such edge states provide a unique opportunity to study a quantum emitter whose size far exceeds the wavelength of emitted light. To better

Software for complete mode structure analysis of a light field

June 26, 2017
Author(s)
Ivan A. Burenkov, Sergey V. Polyakov
We present a software package aimed at simulating photon-number probability distributions of a range of naturally occurring classical and non-classical states of light. This software can generate arbitrary probability distributions based on the known mode

Optomechanical Quantum Correlations at Room Temperature

June 23, 2017
Author(s)
Thomas P. Purdy, Karen E. Grutter, Kartik A. Srinivasan, Jacob M. Taylor
By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical forces at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. Such quantum effects are

Counting Near Infrared Photons with Microwave Kinetic Inductance Detectors

May 22, 2017
Author(s)
Jiansong Gao, Michael R. Vissers, Joel N. Ullom, Johannes Hubmayr, Joseph W. Fowler, Leila R. Vale, Weijie Guo
We demonstrate photon counting at 1550~nm wavelength using microwave kinetic inductance detectors (MKIDs) made from TiN/Ti/TiN trilayer films with superconducting transition temperature $T_{c} \sim$ 1.4~K. The detector has a lump-element design with a

Trion Valley Coherence in Monolayer Semiconductors

May 22, 2017
Author(s)
Kai Hao, Lixiang Xu, Wu Fengcheng, Philip Nagler, Kha Tran, Xin Ma, Tobias Korn, Allan H. MacDonald, Xiaoqin Li, Galan Moody
The emerging field of valleytronics aims to exploit the valley pseudospin of electrons residing near Bloch band extrema as an information carrier. Recent experiments demonstrating optical generation and manipulation of exciton valley coherence (the

A telecom-band cavity-enhanced single-photon source with high klyshko efficiencies

May 18, 2017
Author(s)
Thomas Gerrits, Lu Xiyuan, Steven Rogers, W C. Wiang, Sae Woo Nam, Qiang Lin
We develop an on-chip telecom-band single-photon source with Klyshko efficiencies up to 48%, the highest value for cavity-enhanced photon sources. For the first time, we relate Klyshko efficiency to high-order correlations and verify this relation

Optomechanical Quantum Correlations

May 18, 2017
Author(s)
Thomas P. Purdy, Karen E. Grutter, Kartik A. Srinivasan, Nikolai N. Klimov, Zeeshan Ahmed, Jacob M. Taylor
We present methods to measure optical quantum correlations arising from an optomechanical interaction even when large classical noise sources are present. We demonstrate quantum- backaction-noise-calibrated Brownian motion thermometry as a metrological

Room-temperature-deposited dielectrics and superconductors for integrated photonics

May 1, 2017
Author(s)
Jeffrey M. Shainline, Sonia M. Buckley, Nima Nader, Cale M. Gentry, Kevin C. Cossel, Milos A. Popovic, Nathan R. Newbury, Richard P. Mirin
We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high
Displaying 326 - 350 of 870