Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 151 - 175 of 2321

Near Zero Field Magnetoresistance Spectroscopy: A New Tool in Semiconductor Reliability Physics

May 15, 2023
Author(s)
Patrick Lenahan, Elias Frantz, Sean King, Mark Anders, Stephen Moxim, James P Ashton, Kenneth Myers, Michael Flatte, Nicholas Harmon
A relatively simple addition to many widely utilized semiconductor device characterization techniques can allow one to identify much of the atomic scale structure of point defects which play important roles in the electronic properties of the devices under

The Complex, Unique and Powerful Imaging Instrument for Dynamics (CUPI2D) at the Spallation Neutron Source

May 12, 2023
Author(s)
Adrian Brugger, Alexandru Biris, Jason Harp, Matthew Connolly, George Nelson, Fernando Luis Esteban Florez, Hassina Bilheux, Jiao Lin, Jeffrey Warren, Andrew Kiss, Roland Pellenq, Ann Junghans, Jonathan Morris, Alexander Long, Anton Tremsin, Andrea Strzelec, Mark Anderson, Robert Agasie, Charles FINNEY, Martin Wissink, MIJA HUBLER, Claire White, Brent Heuser, Aaron Craft, Chuting Tan, Kathryn Morris, Sanna Sevanto, Nikolay Kardjilov, Burkhard Schillinger, Matthew Frost, Sven C. Vogel, Maria Cekanova
The Oak Ridge National Laboratory is planning to build the Second Target Station (STS) at the Spallation Neutron Source (SNS). STS will host a suite of novel instruments that complements the First Target Station's beamline capabilities by offering

VHF/UHF detection using high angular momentum Rydberg states

May 12, 2023
Author(s)
Roger Brown
We demonstrate resonant detection of rf electric fields from 240 MHz to 900 MHz (VHF/UHF) using electromagnetically induced transparency with orbital angular momentum, L = 3 → L′ = 4, Rydberg states. These Rydberg states are accessible with three-photon

Impact of Strong Atmospheric Turbulence on Two-Way Optical Time Transfer

May 8, 2023
Author(s)
Laura Sinclair, Emily Caldwell, Jean-Daniel Deschenes, Hugo Bergeron, William C. Swann, Nathan Newbury
Frequency comb based optical time transfer can provide femtosecond-level timing which will support future clock networks. However, for long-distance terrestrial links, non-reciprocal atmospheric turbulence induces a timing penalty. Here, we quantify this

Versatile parametric coupling between two statically decoupled transmon qubits

May 4, 2023
Author(s)
Xiaoyue Jin, Zachary Parrott, SHLOMI KOTLER, Katarina Cicak, Florent Lecocq, John Teufel, Joe Aumentado, Raymond Simmonds
Parametric coupling is a powerful technique for generating tunable interactions between superconducting circuits using only microwave tones. Here, we present a highly flexible parametric coupling scheme demonstrated with two transmon qubits, which can be

Noise-resilient deep tomographic imaging

April 24, 2023
Author(s)
Zhen Guo, Zhiguang Liu, George Barbastathis, Qihang Zhang, Michael Glinsky, Bradley Alpert, Zachary H. Levine
X-ray tomography is a non-destructive imaging technique that reveals the interior of an object from its projections at different angles. Under limited-angle and low-photon sampling, a regularization prior is required to retrieve a high-fidelity

Symplectic geometry and circuit quantization

April 17, 2023
Author(s)
Andrew Osborne, Trevyn Larson, Sarah Jones, Raymond Simmonds, Andras Gyenis, Andrew Lucas
Circuit quantization is an extraordinarily successful theory that describes the behavior of quantum circuits with high precision. The most widely used approach of circuit quantization relies on introducing a classical Lagrangian whose degrees of freedom

Quantum back-action limits in dispersively measured Bose-Einstein condensates

April 8, 2023
Author(s)
Ian Spielman, Emine Altuntas
A fundamental tenet of quantum mechanics is that measurements change a system's wavefunction to that most consistent with the measurement outcome, even if no observer is present. Weak measurements produce only limited information about the system, and as a

NIST Time and Frequency Bulletin

April 4, 2023
Author(s)
Kelsey Rodriguez
The Time and Frequency Bulletin provides information on performance of time scales and a variety of broadcasts (and related information) to users of the NIST services.

Toward improved quantum simulations and sensing with trapped two-dimensional ion crystals via parametric amplification

March 29, 2023
Author(s)
Matthew Affolter, Wenchao Ge, Bryce Bullock, Shaun Burd, Kevin Gilmore, Jennifer Lilieholm, Allison Carter, John J. Bollinger
Improving coherence is a fundamental challenge in quantum simulation and sensing experiments with trapped ions. Here we discuss, experimentally demonstrate, and estimate the potential impacts of two different protocols that enhance, through motional

Interference induced anisotropy in a two-dimensional dark state optical lattice

March 27, 2023
Author(s)
Ian Spielman, Gediminas Juzeliunas, Edvinas Gvozdiovas
We describe a two-dimensional optical lattice for ultracold atoms with spatial structure below the diffraction limit created by a bichromatic optical standing wave. At every point in space these fields couple the internal atomic states in a three-level

Compact, Portable, Thermal-Noise-Limited Optical Cavity with Low Acceleration Sensitivity

March 23, 2023
Author(s)
Megan Kelleher, Charles McLemore, Dahyeon Lee, Josue Davila-Rodriguez, Scott Diddams, Franklyn Quinlan
We develop and demonstrate a compact (less than 6 mL) portable Fabry-Pérot optical reference cavity. A laser locked to the cavity is thermal noise limited at 2 × 10−14 fractional frequency stability. Broadband feedback control with an electro-optic
Displaying 151 - 175 of 2321