Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 176 - 200 of 868

Developing Single Layer MOS Quantum Dots for Diagnostic Qubits

December 28, 2020
Author(s)
Yanxue Hong, Aruna Ramanayaka, Ryan Stein, Joshua M. Pomeroy
The design, fabrication and characterization of single metal gate layer, metal-oxide- semiconductor (MOS) quantum dot devices robust against dielectric breakdown are presented as prototypes for future diagnostic qubits. These devices were developed as a

Josephson Microwave Sources Applied to Quantum Information Systems

December 18, 2020
Author(s)
Adam J. Sirois, Manuel C. Castellanos Beltran, Anna E. Fox, Samuel P. Benz, Peter F. Hopkins
Quantum computers with thousands or millions of qubits will require a scalable solution for qubit control and readout electronics. Colocating these electronics at millikelvin temperatures has been proposed and demonstrated, but there exist significant

The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design

November 12, 2020
Author(s)
Kamal Choudhary, Kevin Garrity, Andrew C. Reid, Brian DeCost, Adam Biacchi, Angela R. Hight Walker, Zachary Trautt, Jason Hattrick-Simpers, Aaron Kusne, Andrea Centrone, Albert Davydov, Francesca Tavazza, Jie Jiang, Ruth Pachter, Gowoon Cheon, Evan Reed, Ankit Agrawal, Xiaofeng Qian, Vinit Sharma, Houlong Zhuang, Sergei Kalinin, Ghanshyam Pilania, Pinar Acar, Subhasish Mandal, David Vanderbilt, Karin Rabe
The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques

Reduction of charge offset drift using plasma oxidized aluminum in SETs

October 26, 2020
Author(s)
Yanxue Hong, Ryan Stein, Michael Stewart, Neil M. Zimmerman, Joshua M. Pomeroy
Aluminum oxide (AlOx)-based single-electron transistors (SETs) fabricated in ultra-high vacuum (UHV) chambers using in situ plasma oxidation show excellent stabilities over more than a week, enabling applications as tunnel barriers, capacitor dielectrics

Quantum Randomness from Probability Estimation with Classical Side Information

September 22, 2020
Author(s)
Emanuel Knill, Yanbao Zhang, Peter L. Bierhorst
We develop a framework for certifying randomness from Bell-test trials based on directly estimating the probability of the measurement outcomes with adaptive test supermartingales. The number of trials need not be predetermined, and one can stop performing

Calibration of free-space and fiber-coupled single-photon detectors

September 14, 2020
Author(s)
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Oliver T. Slattery, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We present our measurements of the detection efficiency of free-space and fiber-coupled single- photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled silicon single-photon avalanche diode

Terahertz Electromagnetically Induced Transparency in Cesium Atoms

September 14, 2020
Author(s)
Sumit Bhushan, Oliver T. Slattery, Xiao Tang, Lijun Ma
We outline a proposal to realize Electromagnetically Induced Transparency (EIT) with the potential to store Terahertz (THz) optical pulses in Cesium atoms. Such a system, when experimentally realized, has a potential to make Quantum Communication possible

Mechanical Quantum Sensing in the Search for Dark Matter

August 13, 2020
Author(s)
Jacob Taylor, Gadi Afek, Sunil Bhave, Daniel Carney, Gordan Krnjaic, David Moore, Robinjeet Singh, Cindy Regal, Benjamin M. Brubaker, Andrew Geraci, Jonathan D. Cripe, Sohitri Ghosh, Jack Harris, Anson Hook, Jonathan Kunjummen, Rafael Lang, Li Tongcang, Tongyan Lin, Zhen Liu, Joseph Lykken, Lorenzo Magrini, Jack Manley, Nobuyuki Matsumoto, Alissa Monte, Fernando Monteiro, Thomas Purdy, C. J. Riedel, Swati Singh, Kanupriya Sinha, Juehang Qin, Dalziel Wilson, Yue Zhao
Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with visible, baryonic matter. Searching for the extremely weak signals produced by this dark matter

The Impossibility of Efficient Quantum Weak Coin-Flipping

June 22, 2020
Author(s)
Carl A. Miller
How can two parties with competing interests carry out a fair coin flip, using only a noiseless quantum channel? This problem (quantum weak coin-flipping) was formalized more than 15 years ago, and, despite some phenomenal theoretical progress, practical

Electron-electron interactions in low-dimensional Si:P delta layers

June 15, 2020
Author(s)
Joseph Hagmann, Xiqiao Wang, Ranjit Kashid, Pradeep Namboodiri, Jonathan Wyrick, Scott W. Schmucker, Michael Stewart, Richard M. Silver, Curt A. Richter
Key to producing quantum computing devices based on the atomistic placement of dopants in silicon by scanning tunneling microscope (STM) lithography is the formation of embedded highly doped Si:P delta layers (δ-layers). This study investigates the

Materials loss measurements using superconducting microwave resonators

June 9, 2020
Author(s)
Corey Rae H. McRae, Haozhi Wang, Jiansong Gao, Michael R. Vissers, Teresa Brecht, A Dunsworth, David P. Pappas, J. Mutus
The performance of superconducting circuits for quantum computing is limited by materials losses. In particular, coherence times are typically bounded by two-level system (TLS) losses at single photon powers and millikelvin temperatures. The identification

Notes on Interrogating Random Quantum Circuits

May 29, 2020
Author(s)
Luis Brandao, Rene C. Peralta
Consider a quantum circuit that, when fed a constant input, produces a fixed-length random bit- string in each execution. Executing it many times yields a sample of many bit-strings that contain fresh randomness inherent to the quantum evaluation. When the

Overlap junctions for superconducting quantum electronics and amplifiers

May 25, 2020
Author(s)
Mustafa Bal, Junling Long, Ruichen Zhao, Haozhi Wang, Sungoh Park, Corey Rae H. McRae, Tongyu Zhao, Russell Lake, Daniil Frolov, Roman Pilipenko, Silvia Zorzetti, Alexander Romanenko, David P. Pappas
Due to their unique properties as lossless, nonlinear circuit elements, Josephson junctions lie at the heart of superconducting quantum information processing. Previously, we demonstrated a two-layer, submicrometer-scale overlap junction fabrication
Displaying 176 - 200 of 868