Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 201 - 225 of 2321

Symmetry-dependent ultrafast manipulation of nanoscale magnetic domains

December 23, 2022
Author(s)
Nanna Hagstrom, Rahul Jangid, F. N. U. Meera, Diego Turenne, Jeffrey Brock, Erik Lamb, Boyan Stoychev, Justine Schlappa, Natalia Gerasimova, Benjamin Van Kuiken, Rafael Gort, Laurent Mercadier, Loic Le Guyader, Andrey Samartsev, Andreas Scherz, Giuseppe Mercurio, Hermann Durr, Alexander Reid, Monika Arora, Hans Nembach, Justin Shaw, Emmanuelle Jal, Eric Fullerton, Mark Keller, Roopali Kukreja, Stefano Bonetti, Thomas J. Silva, Ezio Iacocca
Symmetry is a powerful concept in physics, but its applicability to far-from-equilibrium states is still being understood. Recent attention has focused on how far-from-equilibrium states lead to spontaneous symmetry breaking. Conversely, ultrafast optical

Precise Quantum Measurement of Vacuum with Cold Atoms

December 20, 2022
Author(s)
Daniel Barker, Bishnu Acharya, James A. Fedchak, Nikolai Klimov, Eric Norrgard, Julia Scherschligt, Eite Tiesinga, Stephen Eckel
We describe the cold-atom vacuum standards (CAVS) under development at the National Institute of Standards and Technology. The CAVS measures pressure in the ultra-high and extreme-high vacuum regimes by measuring the loss rate of sub-millikelvin sensor

Crystallization Kinetics in an Immiscible Polyolefin Blend

December 12, 2022
Author(s)
Derek Huang, Anthony Kotula, Chad R. Snyder, Kalman Migler
Motivated by the problem of brittle mechanical behavior in recycled blends of high density polyethylene (HDPE) and isotactic polypropylene (iPP), we employ optical microscopy, rheo-Raman, and differential scanning calorimetry (DSC) to measure the

New Ritz Wavelengths and Transition Probabilities for Parity-Forbidden, Singly Ionised Nickel [Ni ii] Lines of Astrophysical Interest Christian P.

December 12, 2022
Author(s)
Christian P. Clear, Peter Uylings, Ton Raassen, Gillian Nave, Juliet C. Pickering
We report accurate Ritz wavelengths for parity-forbidden [Ni ii] transitions, derived from energy levels determined using high-resolution Fourier transform spectroscopy. Transitions between the 17 lowest Ni ii energy levels of even parity produced Ritz

Efficient chip-based optical parametric oscillators from 590 nm to 1150 nm

December 2, 2022
Author(s)
Jordan Stone, Xiyuan Lu, Gregory Moille, Kartik Srinivasan
Optical parametric oscillators are a ubiquitous technology used to generate coherent light at frequencies not accessible by conventional laser gain. However, chip-based parametric oscillators operating in the visible spectrum have suffered from pump-to

The Mathematics of Quantum Coin-Flipping

December 1, 2022
Author(s)
Carl A. Miller
An expository article (aimed at the general mathematics community) about quantum cryptography and the philosophy of applied mathematics. The article focuses on quantum coin-flipping, a research problem that has a particularly long history.

Improved interspecies optical clock comparisons through differential spectroscopy

November 28, 2022
Author(s)
May E. Kim, Will McGrew, Nicholas Nardelli, Ethan Clements, Youssef Hassan, Xiaogang Zhang, Jose Valencia, Holly Leopardi, David Hume, Tara Fortier, Andrew Ludlow, David Leibrandt
Comparisons of high-accuracy optical atomic clocks \citeLudlow2015} are essential for precision tests of fundamental physics \citeSafronova2018}, relativistic geodesy \citeMcGrew2018, Grotti2018, Delva2019}, and the anticipated redefinition of the SI

Optical Atomic Clock aboard an Earth-orbiting Space Station (OACESS): Enhancing searches for physics beyond the standard model in space

November 18, 2022
Author(s)
Vladimir Schkolnik, Dmitry Budker, Oliver Farttman, Victor Flambaum, Leo Hollberg, Tigran Kalaydzhyan, Shimon Kolkowitz, Markus Krutzik, Andrew Ludlow, Nathan R. Newbury, Christopher Pyrlik, Laura Sinclair, Yevgeny Stadnik, Ingmari Tietje, Jun Ye, Jason Williams
We present a concept for a high-precision optical atomic clock (OAC) operating on an Earth-orbiting space station. This pathfinder science mission will compare the space-based OAC with one or more ultra-stable terrestrial OACs to search for space-time

Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots

November 11, 2022
Author(s)
Richard M. Silver, Jonathan Wyrick, Xiqiao Wang, Ranjit Kashid, Garnett W. Bryant, Albert Rigosi, Pradeep Namboodiri, Ehsan Khatami
The Hubbard model is one of the primary models for understanding the essential many-body physics in condensed matter systems such as Mott insulators and cuprate high-Tc superconductors. Due to the long-range Coulomb interactions, accessible low

Dynamical Instability of 3d Stationary and Traveling Planar Dark Solitons

November 9, 2022
Author(s)
Ian Spielman, Amilson R. Fritsch, T. Mithun, Panayotis Kevrekidis
Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results

An Overview of Ukrainian Thermophysics Research (1926 to 2022)

November 8, 2022
Author(s)
Vladimir Diky, Roman Zakusylo, Kostya Trachenko
We provide an overview of Ukrainian thermophysical research, its historical part and current state. The overview is supplemented by a database indexing thermophysical properties for molecular systems and alloys, as well as lists of scientific journals and

Prestress in Composite Polymer Gels as a Model for Articular Cartilage

November 2, 2022
Author(s)
Alexandros Chremos, Jack F. Douglas, Peter Basser, Ferenc Horkay
Articular cartilage is a composite gel-like material found in animal and human joints and exhibits a unique load-bearing performance that has been challenging to reproduce in synthetic materials and in molecular dynamics simulations. We investigate a

Scalable Quantum Logic Spectroscopy

November 2, 2022
Author(s)
Kaifeng Cui, Jose Valencia, Kevin Boyce, Ethan Clements, David Leibrandt, David Hume
In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the state of an otherwise inaccessible ion species. This extends precision measurements to a broader class of atomic and molecular systems for applications like

Enhanced Atomic Precision Fabrication by Adsorption of Phosphine into Engineered Dangling Bonds on H-Si Using STM and DFT

November 1, 2022
Author(s)
Jonathan Wyrick, Xiqiao Wang, Pradeep Namboodiri, Ranjit Kashid, Fan Fei, Joseph Fox, Richard M. Silver
Doping of Si using the scanning probe technique of hydrogen depassivation lithography has been shown to enable placing and positioning small numbers of P atoms with nanometer accuracy. Several groups have now used this capability to build devices that
Displaying 201 - 225 of 2321