Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 951

A low-cost ultrasonic absorption spectrometer mainly using off-the-shelf parts

March 11, 2025
Author(s)
Michelle Crouse, Malgorzata Musial, Jason Widegren, Jacob Pawlik, Bryan Bosworth, Nathan Orloff, Aaron Hagerstrom, Angela Stelson, Robert Lirette
Ultrasonic absorption spectroscopy can probe intermolecular interactions that inform research into chemical engineering and pharmaceutical manufacturing processes. The only commercial ultrasonic spectrometer costs over one hundred thousand dollars, putting

Quantum Emitters Induced by High Pressure and UV Laser Irradiation in Multilayer GaSe

February 14, 2025
Author(s)
Sinto Varghese, Sichenge Wang, Bimal Neupane, Bhojraj Bhandari, Yan Jiang, Roberto Gonzalez Rodriguez, Sergiy Krylyuk, Albert Davydov, Hao Yan, Yuanxi Wang, Anupama Kaul, Jingbiao Cui, Yuankun Lin
In this work, we report on defect generation in multilayer GaSe through hydrostatic pressure quenching and UV laser irradiation. The Raman line width from the UV 266 nm irradiated sample is much wider than that in pressure-quenched GaSe, corresponding to a

International Comparison CCQM-P229: Pilot Study to Measure Absolute Line Intensities of Selected 12C16O Transitions

January 24, 2025
Author(s)
Joseph Hodges, Zachary Reed, Katarzyna Bielska, Manfred Birk, Ruimin Guo, Gang Li, Jeong Sik Lim, Daniel Lisak, Georg Wagner
We present primary spectroscopic measurements of line intensities in the 3-0 vibrational band of 12C16O. This international measurement campaign was organized under the auspices of the Consultative Committee for Amount of Substance (CCQM) and involved six

Platinum Hydride Formation during Cathodic Corrosion in Aqueous Solutions

January 22, 2025
Author(s)
Thomas Hersbach, Angel T. Garcia-Esparza, Selwyn Hanselman, Thijs Hoogenboom, Ian McCrum, Dimitra Anastasiadou, Jeremey Feaster, Thomas Jaramillo, John Vinson, Thomas Kroll, Amanda Garcia, Petr Krtil, Dimosthenis Sokaras, Marc Koper
Cathodic corrosion is an electrochemical phenomenon that dramatically etches metals under commonly used electrocatalytic conditions. Though cathodic corrosion is thought to occur by forming a metal-containing anion, such an ion has not yet been observed

Towards Precision Spectroscopy of Antiprotonic Atoms for Probing Strong-field QED

January 15, 2025
Author(s)
Goncalo Baptista, Shikha Rathi, Michael Roosa, Quentin Senetaire, Jonas Sommerfeldt, Toshiyuki Azuma, Daniel Becker, Francois Butin, Ofir Eizenberg, Joseph Fowler, Hiroyuki Fujioka, Davide Gamba, Nabil Garroum, Mauro Guerra, Tadashi Hashimoto, Takashi Higuchi, Paul Indelicato, Jorge Machado, Kelsey Morgan, Francois Nez, Jason Nobles, Ben Ohayon, Shinji Okada, Daniel Schmidt, Daniel Swetz, Joel Ullom, Pauline Yzombard, Marco Zito, Nancy Paul
PAX (antiProtonic Atom X-ray spectroscopy) is a new experiment with the aim to test strong-field quantum electrodynamics (QED) effects by performing high-precision x-ray spectroscopy of antiprotonic atoms. By utilizing advanced microcalorimeter detection

Glass microwave microfluidic devices for broadband characterization of diverse fluids

November 15, 2024
Author(s)
Jacob Pawlik, Tomasz Karpisz, Yasaman Kazemipour, Nicholas Derimow, Sarah Evans, Bryan Bosworth, Christian Long, Nathan Orloff, James Booth, Angela Stelson
We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 10 GHz with relatively low uncertainty. Conventional microwave microfluidic devices use polymer-based microfluidic

Spectroscopy of photoionization from the 1E singlet state in nitrogen-vacancy centers in diamond

October 17, 2024
Author(s)
Sean Blakley, Thuc Mai, Stephen Moxim, Jason Ryan, Adam Biacchi, Angela Hight Walker, Robert McMichael
The 1E—1A1 singlet manifold of the negatively charged nitrogen vacancy (NV −) center in diamond plays a central role in the quantum information and quantum sensing applications of the NV − center. However, the energy of this manifold within the diamond

Unusually strong near-infrared photoluminescence of highly transparent bulk InSe flakes

September 23, 2024
Author(s)
Jamie Geng, Dehui Zhang, Inha Kim, Hyong Min Kim, Naoiki Higashitarumizu, I K M Reaz Rahman, Lam Lam, Joel W. Ager III, Albert Davydov, Sergiy Krylyuk, Ali Javey
Bulk γ-InSe has a direct bandgap of 1.24 eV, which corresponds to near infrared wavelengths (λ = 1.0 µm) useful in optoelectronic applications from biometric detectors to silicon photonics. However, its potential for optoelectronic applications is largely

Spectroscopy of laser cooling transitions in MgF

August 23, 2024
Author(s)
Nickolas Pilgram, Benjamin Baldwin, David La Mantia, Stephen Eckel, Eric Norrgard
We measure the complete set of transition frequencies necessary to laser cool and trap MgF molecules. Specifically, we report the frequency of multiple low $J$ transitions of the $X^2\Sigma^+(v^\prime\prime}=0,1) \rightarrow A^2\Pi_1⁄2(v^\prime=0)$, $X^2

Optical n(p, T_90) measurement suite 3: results at l = 1542 nm

August 3, 2024
Author(s)
Patrick Egan, Yuanchao Yang
Single-isotherm n(p, T90) results are reported for the gases Ar, N2, H2O, and D2O at vacuum wavelength λ = 1542.383(1) nm. The argon and nitrogen isotherms were measured near 303 K; the water isotherms were measured near 373 K. Combined with the two

Few-electron highly charged muonic Ar atoms verified by electronic K xrays

July 10, 2024
Author(s)
Takuma Okumura, Toshiyuki Azuma, Douglas Bennett, W. Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Yuto Ichinohe, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Daiji Kato, Miho Katsuragawa, Naritoshi Kawamura, Yasushi Kino, Nao Kominato, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Shinji Okada, Kenichi Okutsu, Nancy Paul, Carl D. Reintsema, Toshiki Sato, Dan Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Shinichiro Takeda, Soshi Takeshita, Motonobu Tampo, Hideyuki Tatsuno, Tong Xiao-Min, Joel Ullom, Shin Watanabe, Shinya Yamada, Takuma Yamashita
Electronic K x rays emitted by muonic Ar atoms in the gas phase were observed using a superconducting transition-edge-sensor microcalorimeter. The high-precision energy spectra provided a clear signature of the presence of muonic atoms accompanied by a few

SINGLE-MODULATOR, DUAL COMB SERRODYNE SPECTROSCOPY

July 3, 2024
Author(s)
Jasper Stroud, David Long, David Plusquellic
Dual optical frequency comb spectroscopy allows for high speed, broadband measurements without any moving parts. Here, we combine differential chirp down conversion to probe large spectral bandwidths in the near-infrared (NIR) and serrodyne modulation to

Laser Offset Stabilization with Chip-Scale Atomic Diffractive Elements

June 7, 2024
Author(s)
Heleni Krelman, Ori Nefesh, Kfir Levi, Douglas Bopp, Songbai Kang, Liron Stern, John Kitching
Achieving precise and adjustable control over laser frequency is an essential requirement in numerous applications such as precision spectroscopy, quantum control, and sensing. In many of such applications it is desired to stabilize a laser with a variable

Observation of a promethium complex in solution

May 22, 2024
Author(s)
Bruce D. Ravel, Darren Driscoll, Frankie White, SUBHAMAY PRAMANIK, Jeffrey Einkauf, Dmytro Bykov, Santanu Roy, Richard Mayes, Laetitia Delmau, Samantha Schrell, Thomas Dyke, April Miller, Matt Silveira, Silveira2 van Cleve, Roy Copping, Sandra Davern, Santa Jansone-Popova, Ilja Popovs, Alexander Ivanov
Lanthanide rare earth metals are ubiquitous in modern technologies, but we know little about chemistry of the 61st element, promethium (Pm), a lanthanide which is highly radioactive and inaccessible. Despite its significance, Pm has conspicuously been

Understanding the Origin and Implication of the Indirect-to-Direct Bandgap Transition in Multilayer InSe

May 2, 2024
Author(s)
Nicholas Pike, Ruth Pachter, Michael Altvater, Chris Stevens, Matthew Klein, Joshua Hendrickson, Huairuo Zhang, Sergiy Krylyuk, Albert Davydov, Nicholas Glavin
Indium selenide (InSe) multilayers have attracted much interest recently due to their electronic and optical properties, partially dependent on the existence of an indirect-to-direct bandgap transition that is correlated to the multilayer thickness. In
Displaying 1 - 25 of 951