Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: John A. Kramar (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 124

Nanometer Resolution Metrology with the NIST Molecular Measuring Machine

September 23, 2005
Author(s)
John A. Kramar
Nanometre accuracy and resolution metrology over technically relevant areas is becoming a necessity for the progress of nanomanufacturing. At the National Institute of Standards and Technology, we are developing the Molecular Measuring Machine, a scanned

Active Vibration Isolation for a Long-Range Scanning Tunneling Microscope

June 1, 2004
Author(s)
K J. Lan, J Y. Yen, John A. Kramar
Vibration Isolation or control is critical for the optimum operation of the Molecular Measuring Machine (M3), a high-resolution, length-metrology instrument at the National Institute of Standards and Technology. This paper describes the extension of the M3

Progress Towards SI Traceable Force Metrology for Nanomechanics

January 1, 2004
Author(s)
David B. Newell, Eric P. Whitenton, John A. Kramar, Jon R. Pratt, Douglas T. Smith
This paper is based, in its entirety, on NIST-approved publications: Calibration of Piezoresistive Cantilever Force Sensors Using the NIST Electrostatic Force Balance, The NIST Electrostatic Force Balance Experiment, The NIST Microforce Realization and

Progress Towards Systeme International d'Unites Traceable Force Metrology for Nanomechanics

January 1, 2004
Author(s)
Jon R. Pratt, Douglas T. Smith, David B. Newell, John A. Kramar, Eric P. Whitenton
Recent experiments with the National Institute of Standards and Technology (NIST) Electrostatic Force Balance (EFB) have achieved agreement between an electrostatic force and a gravitational force of 10^(-5) N to within a few hundred pN/¿N. This result

Dependence of Morphology on Miscut Angle for Si(111) Etched in NH(4)F

May 1, 2003
Author(s)
S Gonda, Joseph Fu, John A. Kramar, Richard M. Silver, Hui Zhou
Using scanning probe microscopy, we have examined the surfaces produced by etching several different vicinal Si(111) samples in NH(4)F aqueous solution. In agreement with others, we found that deoxygenation of the etchant generally reduces the number of

Dependency of Morphology on Miscut Angle for Si(111) Etched in NH 4 F

May 1, 2003
Author(s)
Joseph Fu, Hui Zhou, John A. Kramar, Richard M. Silver, S Gonda
Using scanning probe microscopy, we have examined the surfaces produced by etching several different vicinal Si(111) samples in NH 4F aqueous solution. In agreement with others, we found that deoxygenation of the etchant generally reduces the number of

The NIST Microforce Realization and Measurement Project

April 1, 2003
Author(s)
David B. Newell, Edwin R. Williams, John A. Kramar, Jon R. Pratt, Douglas T. Smith
The National Institute of Standards and Technology (NIST) has launched a five-year Micro-force Realization and Measurement project focusing on the development of an instrument and laboratory capable of realizing and measuring the SI unit of force below