Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Jason Ryan (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 124

Modeling early breakdown failures of gate oxide in SiC power MOSFETs

July 14, 2016
Author(s)
Zakariae Chbili, Asahiko Matsuda, Jaafar Chbili, Jason T. Ryan, Jason P. Campbell, Mhamed Lahbabi, D. E. Ioannou, Kin P. Cheung
One of the most serious technology roadblocks for SiC DMOSFETs is the significant occurrence of early failures in time-dependent-dielectric-breakdown (TDDB) testing. Conventional screening methods have proved ineffective because the remaining population is

Observation of Strong Reflection of Electron Waves Exiting a Ballistic Channel at Low Energy

June 10, 2016
Author(s)
Jason Campbell, Jason Ryan, Kin P. Cheung, David J. Gundlach, Changze Liu, Canute I. Vaz, Richard G. Southwick III, Anthony S. Oates, Ru Huang
Wave scattering by a potential step is a nearly ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the

Interface-State Capture Kinetics by Variable Duty Cycle Charge Pumping

April 27, 2015
Author(s)
Asahiko Matsuda, Jason T. Ryan, Jason P. Campbell, Kin P. Cheung
We demonstrated a new variant of the charge-pumping technique featuring varying duty cycle gate pulses to directly probe the interface-state carrier capture process in the time domain. This technique retains the exceptional sensitivity of charge pumping

Electron Spin Resonance Scanning Probe Spectroscopy for Ultra-Sensitive Biochemical Studies

April 22, 2015
Author(s)
Jason P. Campbell, Jason T. Ryan, Pragya R. Shrestha, Zhanglong Liu, Canute I. Vaz, Jihong Kim, Vasileia Georgiou, Kin P. Cheung
Electron spin resonance (ESR) spectroscopy’s affinity for detecting paramagnetic free radicals, or spins, has been increasingly employed to examine a large variety of biochemical interactions. Such paramagnetic species are broadly found in nature and can

Interface-State Capture Cross Section — Why Does It Vary So Much?

April 20, 2015
Author(s)
Jason T. Ryan, Asahiko Matsuda, Jason P. Campbell, Kin P. Cheung
A capture cross section value is often assigned to Si-SiO2 interface defects. Using a kinetic variation of the charge pumping technique and transition state theory, we show that the value of capture cross section is extremely sensitive to the measurement

Frequency Modulated Charge Pumping with Extremely High Gate Leakage

February 13, 2015
Author(s)
Jason T. Ryan, Jibin Zou, Jason P. Campbell, Richard Southwick, Kin P. Cheung, Anthony Oates, Rue Huang
Charge pumping (CP) has proven itself as one of the most utilitarian methods to quantify defects in metal-oxide-semiconductor devices. In the presence of low to moderate gate leakage, CP quantification is most often implemented via a series of measurements

Device-Level Experimental Observations of NBTI-Induced Random Timing Jitter

December 13, 2014
Author(s)
Guangfan Jiao, Jiwu Lu, Jason Campbell, Jason Ryan, Kin P. Cheung, Chadwin D. Young, Gennadi Bersuker
This work utilizes device-level eye-diagram measurements to examine NBTI-induced changes in timing jitter at circuit speeds. The measured jitter is examined for a variety of ring-oscillator and pseudo-random gate patterns. The ring-oscillator patterns were

PBTI-Induced Random Timing Jitter in Circuit-Speed Random Logic

November 13, 2014
Author(s)
Jiwu Lu, Canute I. Vaz, Guangfan Jiao, Jason P. Campbell, Jason T. Ryan, Kin P. Cheung, Gennadi Bersuker, Chadwin D. Young
Accurate reliability predictions of real world digital logic circuits rely heavily on the relevancy of device level testing. In the case of bias temperature instability (BTI), where recovery plays a significant role, a leap of faith is taken to translate

Impact of BTI on Random Logic Circuit Critical Timing

October 31, 2014
Author(s)
Kin P. Cheung, Jiwu Lu, Guangfan Jiao, Jason P. Campbell, Jason T. Ryan
Bias temperature instability (BTI) is known to be a serious reliability issue for state-of-the-art Silicon MOSFET technology [1-6]. It is well-known that in addition to a “permanent” degradation, there is a large recoverable degradation component [7] that

Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation

July 31, 2014
Author(s)
Jiwu Lu, Canute I. Vaz, Jason P. Campbell, Jason T. Ryan, Kin P. Cheung, Guangfan Jiao, Gennadi Bersuker, Chadwin D. Young
We utilize eye-diagram measurements of timing jitter to investigate the impact of PBTI in devices subject to DC as well as ring oscillator (RO) and pseudo-random binary sequence (PRBS) stress waveforms. We observe that RO measurements miss the relevant

Accurate Fast Capacitance Measurements for Reliable Device Characterization

July 1, 2014
Author(s)
Pragya R. Shrestha, Kin P. Cheung, Jason P. Campbell, Jason T. Ryan, Helmut Baumgart
As device dimensions continue to scale, transient phenomena are becoming increasingly more important to understand for both performance and reliability considerations. Recently, fast capacitances versus voltage (CV) measurements have been gaining attention