Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: John Kitching (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 201 - 225 of 431

Zero-field remote detection of NMR with a microfabricated atomic magnetometer

February 19, 2008
Author(s)
M Ledbetter, I Savukov, D Budker, V Shah, Svenja A. Knappe, John E. Kitching, D Michalak, S Xu, A Pines
We demonstrate remote detection of nuclear magnetic resonance (NMR) with a microfabricated atomic magnetometer and microfluidic channel integrated on a single device. Detection occurs at zero magnetic field, which allows operation of the magnetometer in

Rubidium Vapor Cell with Integrated Nonmetallic Multilayer Reflectors

January 13, 2008
Author(s)
M A. Perez, U Nguyen, A Shkel, Svenja A. Knappe, Elizabeth A. Donley, John E. Kitching
This paper reports on a method for improving the optical efficiency of micromachined reflectors for use in rubidium vapor cells. A hybrid bulk micromachining / multilayer thin film technique is used to form the integrated reflectors, which can redirect

Subpicotesla atomic magnetometry with a microfabricated vapour cell

November 1, 2007
Author(s)
V Shah, Svenja A. Knappe, P Schwindt, John E. Kitching
Highly sensitive magnetometers, capable of measuring magnetic fields below 1 pT, impact areas as diverse as geophysical surveying1, the detection of unexploded ordinance, space science3, nuclear magnetic resonance (NMR), and perimeter and remote monitoring

Time for a Better Receiver: Chip-Scale Atomic Frequency References

November 1, 2007
Author(s)
John E. Kitching
Atomic clocks and precision timing are at the core of almost every aspect of global navigation satellite systems (GNSS). A GNSS receiver determines its position with respect to a subset of the constellation of orbiting satellites by measuring the time

Advances in Chip-Scale Atomic Frequency References at NIST

September 12, 2007
Author(s)
Svenja A. Knappe, V Shah, Alan Brannon, Vladislav Gerginov, Hugh Robinson, Z Popovic, Leo W. Hollberg, John E. Kitching
We present new advances in the development of chip-scale atomic frequency references. Coherent population trapping (CPT) resonances usually exhibit contrasts below 10 %, when interrogated with frequency modulated lasers. A relatively simple way to increase

Demonstration of high-performance chip-scale magnetic shields

August 14, 2007
Author(s)
Elizabeth A. Donley, Eleanor Hodby, Leo W. Hollberg, John E. Kitching
We have designed and tested a set of five miniature nested magnetic shields constructed of high-permeability material, with volumes ranging from 0.01 to 2.5 cm^3. We present measurements of the longitudinal and transverse shielding factors (the ratio of

Differential Atomic Magnetometry Based on a Diverging Laser Beam

July 3, 2007
Author(s)
Eleanor Hodby, Elizabeth A. Donley, John E. Kitching
We demonstrate a novel atomic magnetometer that uses differential detection of the spatially diverging components of a light field to monitor the Larmor precession frequency of atoms in a thermal vapor. The design is implemented in compact form with a

Differential magnetometry based on a diverging laser beam

March 25, 2007
Author(s)
Eleanor Hodby, Elizabeth A. Donley, John E. Kitching
We discuss a new, compact design for a chip-scale differential atomic magnetometer that uses a single diverging laser beam to both pump and multiply probe the alkali atoms.

Chip scale atomic devices

March 13, 2007
Author(s)
Svenja A. Knappe, P Schwindt, Vladislav Gerginov, V Shah, Alan Brannon, Brad Lindseth, Li-Anne Liew, Hugh Robinson, John Moreland, Z Popovic, Leo W. Hollberg, John E. Kitching
We give an overview over our research on chip-scale atomic devices. By miniaturizing optical setups based on precision spectroscopy, we develop small atomic sensors and atomic references such as atomic clocks, atomic magnetometers, and optical wavelength