Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Richard Mirin (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 220

Microring resonator-coupled photoluminescence from silicon W centers

July 10, 2020
Author(s)
Alexander N. Tait, Sonia M. Buckley, Jeffrey T. Chiles, Adam N. McCaughan, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline
Defect centers are promising candidates for waveguide-integrated silicon light sources. We demonstrate microresonator- and waveguide-coupled photoluminescence from silicon W centers. Observations indicate that wavelengths that are on-resonance with

Superconducting microwire detectors with single-photon sensitivity in the near-infrared

June 16, 2020
Author(s)
Jeffrey T. Chiles, Sonia M. Buckley, Adriana E. Lita, Varun B. Verma, Jeffrey M. Shainline, Richard P. Mirin, Sae Woo Nam, Jason Allmaras, Boris Korzh, Emma Wollman, Matthew Shaw
We report on the fabrication and characterization of single-photon-sensitive WSi superconducting detectors with wire widths from 1 υm to 3 υm. The devices achieve saturated internal detection efficiency at 1.55 υm wavelength and exhibit maximum count rates

Optimization of photoluminescence from W centers in silicon-on-insulator for waveguide-coupled sources

May 13, 2020
Author(s)
Sonia M. Buckley, Alexander N. Tait, Galan Moody, Kevin L. Silverman, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline, Stephen Olson, Joshua Hermann, Satyvalu Papa Rao
W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218\textmu m. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diode sources. Here we optimize

Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers

May 1, 2020
Author(s)
Saeed Khan, Jeff Shainline, Richard Mirin, Sae Woo Nam, Sonia Buckley, Jeff Chiles
We demonstrate adiabatically tapered fibers terminating in sub-micron tips that are clad with a higher-index material for coupling to an on-chip waveguide. This cladding enables coupling to a high-index waveguide without losing light to the buried oxide. A

Second harmonic generation in GaAs-on-insulator waveguides fabricated at the wafer-scale

March 18, 2020
Author(s)
Eric J. Stanton, Jeff Chiles, Nima Nader, Galan Moody, Nicolas Volet, Lin Chang, John E. Bowers, Sae Woo Nam, Richard Mirin
Second harmonic generation (SHG) is demonstrated with unprecedented efficiency for a single-pass device. Modal phase-matching in GaAs-on-insulator waveguides is used to convert a 2.0 µm TE pump to a 1.0 µm TM signal with an efficiency of 40 W−1 in a length

Tunable quantum beat of single photons enabled by nonlinear nanophotonics

November 22, 2019
Author(s)
Qing Li, Anshuman Singh, Xiyuan Lu, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Kartik Srinivasan
Integrated photonics is a promising approach for scalable implementation of diverse quantum resources at the chip-scale. Here, we demonstrate the integration of two essential building blocks for quantum information science - quantum sources and frequency

Nonlinear Silicon waveguides produce tunable frequency combs spanning 2.0-8.5 ?m

September 25, 2019
Author(s)
Nima Nader, Abijith S. Kowligy, Jeffrey T. Chiles, Eric J. Stanton, Henry R. Timmers, Alexander J. Lind, Kimberly Briggman, Scott Diddams, Flavio Caldas da Cruz, Richard Mirin, Sae Woo Nam, Daniel M. Lesko
We present fully air clad suspended-silicon waveguides for efficient nonlinear interactions limited only by the silicon transparency. Novel fork-shaped couplers provide efficient input ( 2 dB) and broadband 3 dB output coupling spanning 6.0-8.5 υm

Multi-functional integrated photonics in the mid-infrared with suspended AlGaAs on silicon

September 18, 2019
Author(s)
Jeff Chiles, Nima Nader, Eric J. Stanton, Daniel Herman, Galan Moody, Biswarup Guha, Kartik Srinivasan, Scott Diddams, Ian Coddington, Nathan R. Newbury, Jeff Shainline, Sae Woo Nam, Richard Mirin, Jiangang Zhu, Juliet Gopinath, Connor Fredrick
The microscale integration of mid- and longwave-infrared photonics could enable the development of fieldable and reliable chemical sensors. The choice of material platform immediately determines the strength and types of optical nonlinearities available

Single-scan acquisition of multiple multidimensional spectra

May 29, 2019
Author(s)
Travis M. Autry, Galan Moody, James M. Fraser, Corey A. McDonald, Richard P. Mirin, Kevin L. Silverman
Multidimensional coherent spectroscopy is a powerful tool for understanding the ultrafast dynamics of complex quantum systems. To fully characterize the nonlinear optical response of a system, multiple pulse sequences must be recorded and quantitatively

Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip

May 20, 2019
Author(s)
Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Hofling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, Kartik Srinivasan
Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has

Towards a source of entangled photon pairs in gallium phosphide

May 9, 2019
Author(s)
Paulina S. Kuo, Peter G. Schunemann, Mackenzie Van Camp, Varun B. Verma, Thomas Gerrits, Sae Woo Nam, Richard P. Mirin
We investigate parametric down-conversion in orientation-patterned GaP. Pumped at 865 nm, the signal and idler are at 1350 nm and 2400 nm, respectively.

Generating polarization-entangled photon pairs in domain-engineered PPLN

May 7, 2019
Author(s)
Paulina S. Kuo, Varun B. Verma, Thomas Gerrits, Sae Woo Nam, Richard P. Mirin
Using a periodically poled LiNbO3 crystal that is domain-engineered for two simultaneous type-II down-conversion processes, we demonstrated polarization-entangled photon-pair generation.

Integrated transition edge sensors on lithium niobate waveguides

May 7, 2019
Author(s)
Thomas Gerrits, Adriana Lita, Richard Mirin, Sae Woo Nam, Jan P. Hoepker, Stephan Krapick, Harald Herrmann, Raimund Ricken, Victor Quiring, Christine Silberhorn, Tim J. Bartley
We show the proof-of-principle detection of light at 1550 nm coupled evanescently from a lithium niobate waveguide to a superconducting transition edge sensor. The coupling efficiency strongly depends on the polarization, the overlap between the evanescent

Design of superconducting optoelectronic networks for neuromorphic computing

November 6, 2018
Author(s)
Sonia Buckley, Adam McCaughan, Jeff Chiles, Richard Mirin, Sae Woo Nam, Jeff Shainline
We have previously proposed a novel hardware platform for neuromorphic computing based on superconducting optoelectronics that presents many of the features necessary for information processing in the brain. Here we discuss the design and training of

Circuit designs for superconducting optoelectronic loop neurons

October 12, 2018
Author(s)
Jeffrey M. Shainline, Adam N. McCaughan, Jeffrey T. Chiles, Richard P. Mirin, Sae Woo Nam, Sonia M. Buckley
We present designs of superconducting optoelectronic neurons based on superconducting single- photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. The neurons send few-photon signals to synaptic

Superconducting optoelectronic networks III: synaptic plasticity

July 5, 2018
Author(s)
Jeffrey M. Shainline, Adam N. McCaughan, Sonia M. Buckley, Christine A. Donnelly, Manuel C. Castellanos Beltran, Michael L. Schneider, Richard P. Mirin, Sae Woo Nam
As a means of dynamically reconfiguring the synaptic weight of a superconducting optoelectronic loop neuron, a superconducting flux storage loop is inductively coupled to the synaptic current bias of the neuron. A standard flux memory cell is used to

Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication

June 13, 2018
Author(s)
Jin Liu, Kumarasiri Konthasinghe, Marcelo I. Davanco, John Lawall, Vikas Anant, Varun Verma, Richard Mirin, Jin Dong Song, Ben Ma, Ze Sheng Chen, Hai Qiao Ni, Zhi Chuan Niu, Kartik Srinivasan
Single self-assembled InAs/GaAs quantum dots are a promising solid-state quantum technology, with vacuum Rabi splitting, single-photon-level nonlinearities, and bright, pure, and indistinguishable single-photon generation having been demonstrated. In such

Short-wave infrared compressive imaging of single photons

June 6, 2018
Author(s)
Thomas Gerrits, Daniel Lum, Varun B. Verma, John Howell, Richard P. Mirin, Sae Woo Nam
We present a short-wave infrared (SWIR) single photon camera based on a single superconducting nanowire single photon detector (SNSPD) and compressive imaging. We show SWIR single photon imaging at a megapixel resolution with a low signal-to-background

Superconducting optoelectronic networks V: networks and scaling

May 17, 2018
Author(s)
Jeffrey M. Shainline, Jeffrey T. Chiles, Sonia M. Buckley, Adam N. McCaughan, Richard P. Mirin, Sae Woo Nam
Networks of superconducting optoelectronic neurons are investigated for their near-term technological potential and long-term physical limitations. Networks with short average path length, high clustering coefficient, and power-law degree distribution are