Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 276 - 300 of 615

Joint Spectral Measurements at the Hong-Ou-Mandel Interference Dip

January 29, 2013
Author(s)
Thomas Gerrits, Francesco F. Marsili, Varun B. Verma, Adriana E. Lita, Antia A. Lamas-Linares, Jeffrey A. Stern, Matthew Shaw, William Farr, Richard P. Mirin, Sae Woo Nam
We employed a 2 channel single-photon detection system with high detection efficiency and low jitter to characterize the joint spectral distribution (JSD) of the correlated photons emerging from a Hong-Ou-Mandel interference arrangement. We show the JSDs

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

October 2, 2012
Author(s)
Thomas Gerrits, Brice R. Calkins, Nathan A. Tomlin, Adriana E. Lita, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin
Photon number resolving transition-edge sensors (TES) are the cutting-edge enabling technology for high quantum efficiency photon counting when the number of photons of an input state needs to be determined. The TES developed at NIST reliably show system

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

October 2, 2012
Author(s)
Thomas Gerrits, Brice R. Calkins, Nathan A. Tomlin, Adriana E. Lita, Alan L. Migdall, Richard P. Mirin, Sae Woo Nam
Typically, transition edge sensors resolve photon number of up to 10 or 20 photons, depending on the wavelength and TES design. We extend that dynamic range up to 1000 photons, while maintaining sub- shot noise detection process uncertainty of the number

A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics

October 1, 2012
Author(s)
Martin O. Sandberg, Fabio C. da Silva, Kent D. Irwin, David P. Pappas, Sae Woo Nam, David Wisbey, Ben Mazin, Seth Meeker, Jonas Zmuidzinas, Henry G. Leduc
We demonstrate single-photon counting at 1550 nm with titanium-nitride (TiN) microwave kinetic inductancedetectors. Full-width-at-half-maximum energy resolution of 0.4 eV is achieved. 0-, 1-, 2- photon events are resolved and shown to follow Poisson

Multiexciton dynamics in infrared-emitting colloidal nanostructures probed by a superconducting nanowire single-photon detector

September 30, 2012
Author(s)
Richard L. Sandberg, Lazaro A. Padilha, Mumtaz Qazilbash, Wan Ki Bae, Richard D. Schaller, Jeffrey M. Pietryga, Martin Stevens, Burm Baek, Sae Woo Nam, Victor I. Klimov
Carrier multiplication (CM) is the process in which absorption of a single photon produces multiple electron-hole pairs. Here, we evaluate the effect of particle shape on CM efficiency by conducting a comparative study of spherical nanocrystal quantum dots

On-chip, photon-number-resolving, telecom-band detectors for scalable photonic information processing

July 30, 2012
Author(s)
Thomas Gerrits, Nick Thomas-Peter, James Gates, Adriana E. Lita, Benjamin Metcalf, Brice R. Calkins, Nathan A. Tomlin, Anna E. Fox, Antia A. Lamas-Linares, Justin Spring, Nathan Langford, Richard P. Mirin, Peter Smith, Ian Walmsley, Sae Woo Nam
We demonstrate the operation of an integrated photon number resolving transition edge sensor (TES), operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows the detector to be placed at arbitrary locations within a

Transition edge sensors with low jitter and fast recovery times

July 30, 2012
Author(s)
Antia A. Lamas-Linares, Nathan A. Tomlin, Brice R. Calkins, Adriana E. Lita, Thomas Gerrits, Joern Beyer, Richard P. Mirin, Sae Woo Nam
Superconducting transition edge sensors (TES) for single photon detection have been shown to have almost perfect quantum efficiency (98%) at a wide range of wavelengths. Their high quantum efficiency combined with their ability to intrisically measure the

An algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor

July 20, 2012
Author(s)
Zachary H. Levine, Thomas Gerrits, Alan L. Migdall, Daniel V. Samarov, Brice R. Calkins, Adriana E. Lita, Sae Woo Nam
Improving photon-number resolution of single-photon sensitive detectors is important for many applications, as is extending the range of such detectors. Here we seek improved resolution for a particular Superconducting Transition-Edge Sensor (TES) through

Towards a fiber-coupled picowatt cryogenic radiometer

June 11, 2012
Author(s)
Nathan A. Tomlin, John H. Lehman, Sae Woo Nam
A picowatt cryogenic radiometer (PCR) has been fabricated at the microscale level for electrical substitution optical fiber power measurements. The absorber, electrical heater, and thermometer are all on a micromachined membrane less than 1mm on a side

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

May 6, 2012
Author(s)
Thomas Gerrits, Brice R. Calkins, Nathan A. Tomlin, Adriana E. Lita, Alan L. Migdall, Richard P. Mirin, Sae Woo Nam
We illuminate a photon-number-resolving transition edge sensor with strong pulses of light containing up to 6.7 million photons (0.85 pJ per pulse). These bright pulses heat the sensor far beyond its transition edge into the normal resistance regime. We

On-chip, photon-number-resolving, telecom-band detectors for scalable photonic information processing

May 6, 2012
Author(s)
Thomas Gerrits, Nick Thomas-Peter, James Gates, Adriana E. Lita, Benjamin Metcalf, Brice R. Calkins, Nathan A. Tomlin, Anna E. Fox, Antia A. Lamas-Linares, Justin Spring, Nathan Langford, Richard P. Mirin, Peter Smith, Ian Walmsley, Sae Woo Nam
We demonstrate an integrated photon-number resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows the detector to be placed at arbitrary locations within a planar optical circuit. Up to 5 photons

Single-photon and photon-number-resolving detectors

April 20, 2012
Author(s)
Richard P. Mirin, Sae Woo Nam, Mark Itzler
Several important advances were reported in single-photon detectors and photon-number-resolving detectors in 2011. New materials with smaller superconducting gaps were demonstrated for superconducting nanowire single-photon detectors (SNSPDs) that led to