Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 301 - 325 of 615

Single-photon and photon-number-resolving detectors

April 20, 2012
Author(s)
Richard P. Mirin, Sae Woo Nam, Mark Itzler
Several important advances were reported in single-photon detectors and photon-number-resolving detectors in 2011. New materials with smaller superconducting gaps were demonstrated for superconducting nanowire single-photon detectors (SNSPDs) that led to

Conclusive quantum steering with superconducting transition-edge sensors

January 10, 2012
Author(s)
Devin H. Smith, Marcelo de Almeida, Gillett Geoff, Branciard Cyril, Allesandro Fedrizzi, Weinhold J. Till, Adriana Lita, Brice R. Calkins, Thomas Gerrits, Wiseman H, Sae Woo Nam, Andrew G. White
Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up

Higher-order photon correlations in pulsed photonic crystal nanolasers

December 16, 2011
Author(s)
D. Elvira, X. Hachair, Varun Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, Burm Baek, Sae Woo Nam, E Dauler, I. Abram, Martin Stevens, A. Beveratos
We report on the higher-order photon correlations of a high-Β nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single-photon detector we measured g (n)(0) with n = 2,3,4. All orders of correlation

On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing

December 5, 2011
Author(s)
Thomas Gerrits, Nick Thomas-Peter, James Gates, Adriana E. Lita, Benjamin Metcalf, Brice R. Calkins, Nathan A. Tomlin, Anna E. Fox, Antia A. Lamas-Linares, Justin Spring, Nathan Langford, Richard P. Mirin, Peter Smith, Ian Walmsley, Sae Woo Nam
Integration is currently the only feasible route towards scalable photonic quantum processing devices which are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices

High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors

November 17, 2011
Author(s)
Michael G. Tanner, Shellee D. Dyer, Burm Baek, Robert Hadfield, Sae Woo Nam
We demonstrate a distributed fiber Raman sensor for absolute temperature measurement with spatial resolution on the order of 1 cm at 1550 nm wavelength in single mode fiber using superconducting nanowire single photon detectors. Rapid measurements are

Generation and characterization of high-purity, pulsed squeezed light at telecom wavelengths from pp-KTP

November 15, 2011
Author(s)
Thomas Gerrits, Martin J. Stevens, Burm Baek, Brice R. Calkins, Adriana E. Lita, Scott C. Glancy, Emanuel H. Knill, Sae Woo Nam, Richard P. Mirin, Robert Hadfield, Ryan Bennink, Warren Grice, Sander N. Dorenbos, Tony Zijlstra, Teun Klapwijk, Val Zwiller
We characterize a pp-KTP crystal designed to produce pure single mode squeezed vacuum at 1570 nm. Measurements show a raw (corrected) Hong-Ou-Mandel interference with 86 % (90 %) visibility and a circular joint spectral probability distribution with a

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

September 19, 2011
Author(s)
Thomas Gerrits, Brice R. Calkins, Nathan A. Tomlin, Adriana E. Lita, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin
Photon number resolving transition-edge sensors (TES) are the cutting-edge enabling technology for high quantum efficiency photon number counting. The TES developed at NIST reliably show system detection efficiencies of more than 95%, and even approach 99%

Fully lithographic fiber-coupled cryogenic radiometer for picowatt powers

September 19, 2011
Author(s)
Nathan A. Tomlin, John H. Lehman, Sae Woo Nam
A new type of absolute cryogenic radiometer has been fabricated at the microscale level for direct substitution optical fiber power measurements. It consists of three parts: an absorber, electrical heater, and thermometer all on a single micro-machined

Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector

May 16, 2011
Author(s)
Sae Woo Nam, J. A. O'Connor, Michael Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S Miki, Z. Wang, Robert Hadfield
We report on the position-dependent variation in output pulse timing across a superconducting single- photon detector. Our device consists of a single niobium nitride nanowire meander (100 nm width, 4 nm film thickness, 2 mm length). We use a confocal