Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Damian Lauria (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 75

Hydrogen Embrittlement Susceptibility and Fracture Toughness Measurements of Welded X65M Pipeline Steels

November 14, 2024
Author(s)
Newell Moser, Zack Buck, Nicholas Derimow, May Ling Martin, Damian Lauria, Enrico Lucon, Peter Bradley, Matthew Connolly
Hydrogen is known to deteriorate the mechanical performance of steels (i.e., hydrogen embrittlement). The welding processes involved in the manufacturing and joining of steel pipelines locally modifies the microstructure of the steel, further complicating

Assessing girth weld quality of pipeline steels and their susceptibility to hydrogen embrittlement

August 28, 2024
Author(s)
Zack Buck, Newell Moser, Nicholas Derimow, May Ling Martin, Damian Lauria, Enrico Lucon, Douglas Stalheim, Peter Bradley, Matthew Connolly
Hydrogen has long been considered a viable carbon-free option for ever-increasing societal desires to transform our energy infrastructure towards more renewable and alternative technologies. However, the effects of hydrogen-assisted damage mechanisms that

Effects of hydrogen on the evolution of 4130 steel microstructure as a result of tensile loading

July 12, 2024
Author(s)
Zack Buck, May Ling Martin, Damian Lauria, Jason Killgore, Peter Bradley, Yan Chen, Ke An, Matthew Connolly
Neutron diffraction and Scanning Kelvin Probe Force Microscopy (SKPFM) were used to study the evolution of lattice strain, dislocation density, and phase partitioning of a ferrite/martensite pressure vessel steel (AISI 4130) that resulted from tensile

Assessing girth weld quality of pipeline steels and their susceptibility to hydrogen embrittlement

June 16, 2024
Author(s)
Zack Buck, Newell Moser, May Ling Martin, Nicholas Derimow, Damian Lauria, Enrico Lucon, Douglas Stalheim, Peter Bradley, Matthew Connolly
Hydrogen is known to cause premature failure in various steel infrastructures due to effects of embrittlement, which is particularly detrimental to ferritic steel structures such as pipelines and pressure vessels. Therefore, understanding the

New NIST Acquisition System for Reading Charpy Machine Encoders

November 13, 2023
Author(s)
Enrico Lucon, John S. Quintavalle, Damian Lauria
A new acquisition system was developed at NIST for reading angle values from the digital encoders of the three Charpy reference machines in Boulder, Colorado. The associated LabView software provides the conversion from encoder angles to absorbed energies

Effects of mechanical deformation on dislocation density and phase partitioning in 4130 steel

August 22, 2023
Author(s)
Zack Buck, Matthew Connolly, May Ling Martin, Damian Lauria, Jason Killgore, Peter Bradley, Yan Chen, Ke An, Andrew Slifka
Interrupted tensile tests were performed on an AISI 4130 pressure vessel steel and investigated by neutron diffraction and scanning microscopy techniques. Analysis of the neutron diffraction patterns reveal a partitioning of ferrite and martensite phases

Determining Steel Weld Qualification and Performance for Hydrogen Pipelines: Phase I Report

May 23, 2023
Author(s)
Matthew Connolly, May Ling Martin, Zack Buck, Newell Moser, Enrico Lucon, Damian Lauria, Peter Bradley, Andrew Slifka, Robert Amaro
This report details the results of Phase I of the DOT/PHMSA sponsored work on "Determining Steel Weld Qualification and Performance for Hydrogen Pipelines". In this work, the goals of Phase I were 1) to perform a literature review of steel weld

Strain-life performance in hydrogen of DOT pressure vessel steel

November 7, 2022
Author(s)
May Ling Martin, Peter Bradley, Damian Lauria, Robert L. Amaro, Matthew Connolly, Andrew Slifka
Strain-life testing of a 4130 pressure vessel steel was conducted in air and in a high-pressure gaseous-hydrogen environment. Hydrogen causes an order of magnitude decrease in lifetime compared to in-air performance at the same strain-amplitudes. This

The Digital NIST: Challenges and opportunities in the digital transformation of NIST's calibration services

September 21, 2022
Author(s)
Catherine Cooksey, James A. Fedchak, Robert Hanisch, Gregory (Greg) C. Cala, Damian Lauria, Raymond Plante, Benjamin Long, John S. Quintavalle, Manmohan Moodra
Early in 2022 NIST embarked on a pilot project to produce digital calibration reports and certificates of analysis for reference materials. The goal of the project was to produce a few examples of each for the purpose of assessing the scope and challenges

High Energy X-Ray Diffraction and Small-Angle Scattering Measurements of Hydrogen Fatigue Damage in AISI 4130 Steel

June 4, 2022
Author(s)
Matthew Connolly, May Ling Martin, Peter Bradley, Damian Lauria, Andrew Slifka, Jun-Sang Park, Robert Amaro, Jonathan Almer
Accurate lifetime predictions are critical for repurposing existing pipelines for hydrogen transmission as well as for developing novel steels which are minimally susceptible to lifetime degradation by hydrogen. Ultimately, lifetime prediction models

Evaluating a Natural Gas Pipeline Steel for Blended Hydrogen Service

March 19, 2022
Author(s)
May Ling Martin, Matthew Connolly, Zack Buck, Peter Bradley, Damian Lauria, Andrew Slifka
An X70 natural gas pipeline steel that is being considered for blended natural gas/hydrogen gas service was evaluated in a high-pressure hydrogen gas environment. Fracture toughness testing and fatigue crack growth rate testing were conducted according to

Materials Testing in Hydrogen

November 30, 2021
Author(s)
Matthew Connolly, May Ling Martin, Damian Lauria, Peter Bradley, Zack Buck, Andrew Slifka, Robert L. Amaro

Characteristics and Mechanisms of Hydrogen-Induced Quasi-Cleavage Fracture of Lath Martensitic Steel

January 10, 2021
Author(s)
Lawrence Cho, Peter E. Bradley, Damian S. Lauria, May L. Martin, Matthew J. Connolly, Jake Benzing, Eun Jung Seo, Kip O. Findley, John G. Speer, Andrew J. Slifka
This study presents an in-depth characterization of the microstructures, crystallographic orientations, and dislocation characteristics beneath the hydrogen-induced quasi-cleavage features of an as-quenched, lath martensitic (') 22MnB5 steel. The fracture